CompSuml WORK TN .PROGRESS Oct. 26, 1993

Analysis and Application of Simply Compénsated Summation

Prof. W. Kahan
Mathematics Dept., and Computer Science Dept.
University of California at Berkeley

Abstract . _
Summing a slowly convergent series s = fAxw. , a two-line program
5 1= X §
for k =1 ton do s = 5 + X« 3
incurs n rounding errors due solely to additions. These errors
accumul ate to the point where esach x. i% obscured by as many as
n+l-k . Founding errors. The loss of accuracy tan be severe if n
is huge and almost every x. is smaller in magnitude than the sum
s to which it is added. Counsel of Perfection would reverse the
order of summation to attenuate roundoff’'s effect, but this may
be impractical if n is not known in advance and if x« must be
computed by recurrence for k=1, 2, ..., n in turn. . An old
trick we call Compensated Summation circumvents that loss of
accuracy in sums of series, in trajectory calculations, and in
numerical quadratures, and at so little extra cost as merits its
avallability to every general computer program serving those ends.

What Roundoff Does _

Rounding off s +x. replaces it by (s + x) (1 + beg) where no
more is known about b, than that ibel £ 1., and & 1is a very
tiny guantity 1ntr1ns1c to a computer’'s flcat1nq point arithmetic.
Most computers, conforming to I1EEE Standard 754, round to 24
or 33 sig. bits g0 their ¢ = 2-24 pr -3 résp. Hewlett—
Packard ' 71B calculators round to 12 sig. dec. in conformity
with IEEE B854 sgo their £ = 51° 11 3 IBM /3703 mostly chop to
g = 16~ for single- precision, & = 167*% for double, & = 16—=7
for extended. (CRAYs . subtract in so aberrant a way that .neither
the foregoing nmor what follows applies to them properly.)

Roundo++ transforms the two-line program above inta this:
Se = ¥o , and s, = (Srwr + %) (1 +bus) for k =1, 2,
Therefore what it actually computes is
Sn = {1 + foE)" xo + If (l*‘ko)"*"k X . ‘

wherein little more can be said about f. than that {ful < 1 .
This sum can seem arbitrarily. wrontg. For example consider the sum

t = (105 tan(100Or/1BO) + 1) - 103* tan (102 n/180) ,
whose three terms ought to add up to just i despite that almost
every computer computes t = 0 or else something far bigger than
the ideal value 1 . The trouble is that the first sum rounds off
as if the number " 1 " were " 0 " , after which the difference
should cancel to O. but for roundof¥ during calculatians of the
quantities 103 tan(...J), which should both be ~5.47128....037 .

Backward Error Analysis
If t is wrong, vyet it is np worse than if each term in its sum
had been calculated only 511ght1y less accurately than the best

that can be expected. @nd in general ,. provided n is not huge,
"8~ 15 about as accurate as if the-terms X had been computed as

EompSuml WORK IN PROBGRESS S Dct. 26, 1993

(1l + fpg)rm+i—k »,. instead, which is only moderately worse than
the best that can be expected. This conclusion is typical of
Backward Error Analyses; the algorithm so analysed works as well
as can reasonably be expected unless the data is either exact or
too near some singularity. The singularity here is at n = 0 .

When n is toco huge, s, can be far worse than is explainable by
maderately perturbed end—figures among the summands xw . For an
extreme example try n = 1/{4¢) , Xo =4 , X =& if k > O ;
the two-line program gets s, = 4 , not the correct sum 4.25 .

The Obvious Remedy: Double Precision ‘
If hardware provides it, higher precision is the most economical
way to cope with enormous numbers n of terms x. . It adds at
mast two declarations to the two-line program:

Single Precision ®... 3

Double Precision s 3

S (T %o ; . .

for k=1ten do s ‘=8 + X }
It replaces & in the error analyses above by 2 or something
smaller, rendering the error of summwation negligible compared
with the uncertainty inherited with x. . When supported directly
by a computer’'s hardware, Double Precision operations take about
as much time, surely less than twice as much, as Single.

But if Doubled Precision operations must be synthesized out of
Single in software, Double may well take 5 to 10 times longer
than Single, more on a CRAY. " Thus, when x« 15 already being
computed at the highest precision.supported'directly by hardware
or by the programming language in use, relief from errors in sums
of vast numbers of terms must be sought elsewhere than from higher
precision that runs too slowly or else is practically unavailable.
That unavailability rs the only justification for wmhat follows.

The Unobvious Remedy: Compensated Summation

To compensate for the error committed when s +x. is rounded off

let us estimate that error and record it in an auxiliary variable

€ which will be used the next time around the loop to cancel most
of the error off. Here is a program that does that:

S T Ro 3 & = H
for k = 1 to ... 'do ¢ ‘
y = € + %X 3 ... EComputing x. costs most time.
t 1=y + 85 3 «va Here is the worst rounding error,
c ‘= (s — t) +y ;3 ... and here is its estimate.
s =t} .
This is Compensated Summation. When and why does it work? First

let us take account of roundoff’'s contribution to the program:

S0 = Xo 3 Lo =0 , and for k = 1, 2, ..., n in turn
Yie © (Cle—1 + X)) (1 + &ap8) ,

S = (Yk +_Sk-.-.1> (] + bkf) ’

Cie & ((Su.—j - Su) (1 + dyt) +_ yk) (1 + _EHE) .

CompSumi WORK IN PROGRESS : Oct. 26, 1993

About the roundoff terms awe, but, dut, et wé'know.nothing but
that their magnitudes cannot exceed & .« Our task is to determine
bounds for the first few coefficients of an expansion in powers of
g for the computed sums of perturbed terms:
Sm = FO (1 + (FrutQru) E)Xe Co = — I8 OmEX K =

The intent of this expansion is to show how little each xx would
have to be perturbed to render the computed sum s, exactly equal
to the sum of the perturbed terms; this is a kind of Backward

Error—-Analysis. We shall see that the computed s. is no worse
than if only the last computed sig. dec. of every x. had first
been altered, and this remains so for all n << 1/¢ , implying

that the accuracy of s~ is limited only by the accuracies of the
terms X for almost all practical purposes.

Outline of a Proof that It Works (Skip this on first reading.)
To avoid the blizzard of subscripts that afflicis D. E. Knuth's .
treatment in problem 19, p. 229 and 572-3, of his Seminumerical
Algorithms (2d ed., 1981) Addison-Wesley, MA, we adopt a simpler
notation that conveys only the essential form of our results:

Given = (1 + (Fy+#Bids + (Fu(e)+B2(s))e2)X - and
= C=(Bs + Ba(eleD)X , '
let t= (C + x) (1 + ag) 3

np~<-0um

c

(y + 8Y(1 + bg) 3

. ((5 - s) (1 + ds) + y){(i + eg) .

Heree S and C stand for Sw.1 and Cwk—1 X stands for any Xj,
with 3 < k , and x, s and ¢ stand for Xk , Sk and cwx . Falg)
and Gz(s) are polynomials in & . About a, b, d, e we know
nothing except that their magnitudes cannot exceed 1 .

Substituting S and T into the last three equations invites too
many errors in algebra to be done by hand reliably, so it has
-been submitted to computerized symbolic algebrea systems ranging
from SCRATCHPAD in 1972 to MuMath in 1984. The tresults are

s = (I + (fi+gede + (fa+g=0e2)X + (1 + (hy+gide + (hzta=)e®)x ,
€ = =—{gs + gze)eX -~ (g1 + Qmsdex , o ' '
where : .

fi = Fy , 1 = b hs = a~d , Qs = b+d ,

fz2 = fa(g) = Fale) - (a~-d)By, - (d+edb + Ocg) ,

g= = g=(g) = Fib - Gsd + (d+e)b + O(g) ,

hz = hz(s) = —(ad+bd+be+de) + O¢sg) , ~

Qz = gz(g) = ab+ad+bd+be+de + O(s) as £ —» 0 .

We interpret these equations to mean that each pass around the ’
for—loop initializes the coefficients in s+c and ¢ of x« to
(1 + hyg + hae®) and ~-{(q. + gzele respectively, and updates
the coefficient of each previous x3; from (1 + F.e + Fzg®) and
-{61 + Bzele respectively to (1 + f,& + f28%) and -(g. + g=8)& .
Evidently £, = F, stays unchanged from its initial assignment

hy, , so ifis]l ¢ 23 but 6, starts at g. , so |G| £ 2,

and then is replaced by g. with Jg.l ¢ 1. If terms 0Odg) are
ignored, Gz starts at g= with |Bzl < 5 , and then goes to

tiz. with Jg=! £ [Fa] + 1G4 +2 ¢ 6 at first, < 5 afterwards.

CompSumi WORK IN PROGRESS : Dct. 26, 1993

The interesting case is fz . Still ignoring terms O(s), we see
that F= 1is initialized to bhz., so |F=zl < 43 then it goes to
fa with |fz-F=z| £ 21641 +2 € &6 at first, ¢ 4 afterwards.
Therefare {fzl < 4(k=~j)} + & + D¢eg) . Now our first conclusion
may be drawn, wvalid im the uvsual case when the correction term c
is so small compared with s that &+c rounds to s . In that
case our attempt to compute T2 x. produces instead a result s,
within one rounding error of a2 sum IR X, whose perturbed terms
X all satisty [Xee ~ Xl £ (2+ A(n~kK)+&E)e + 0(NeE)2) & Xl .

A similar conclusion for s. alene, regardless of ¢, 5 entails
estimation of f,+g, and Ffztgz= . The result is that, rather
than compute IZxx , compensated summation delivers a result
Sn = I8 Xk 1in which

I X =2l € €3+ (4(n—k}+Deg+0(Nnl2) € Xl .

Interpretation and Improvement of these Error Bounds

The last ineguality says that, provided n << i/¢ , compensated

summation’'s result is scarcely worse than if esach summand x. had
first been obscured to the extent of roughly 3 ulps (Units in

its Last Place computed.) This is far less than the n ulps that

afflict the early summands in the two-line summation program. But
these are error bounds; the actual errors are certainly smaller
and probably far smaller. Therefore we cannot expect the ratio

(two-line program’'s error)/(compensated summation’'s error)
to get so big as n/3 . very often. What can we expect?

Conventional wisdom expects rounding errors to cancel each other
quite often rather than always conspire to do their worst. On a
machine that rounds correctly, as do those that conform to IEEE
Standards 7354 and 854, we might therefore expect that errors in
the two-line program would more often accumulate to something like
Yin/12) ulps rather than n . The truth lies somewhere between.

When Ix. is a very slowly convergent series, the terms x,. can
change so slowly that rounding errors will mostly change slowly
too, and hence reinforce instead of cancel. The extreme example
4 + £ + g + ... + g illustrates this possibility. That is why
the two-line program’s errors freqguently amount to far more than
¥{n/12) and yet far less than n ulps. But computers that chap
instead of round, as do CRAYs and IBM /370s, incur errors not
far from n/2 ulps almost all the time. .

The error bounds for compensated summation are pessimistic too for
a non-probabilistic reason. The following Theorem explains it
for every commercially significant MNorth American computer today
except a CRAY : '

I+ 8§ and T are two floating-point numbers stored by
the computer in the same format { both single-, ar both
double-precision), and if 172 ¢ 8/T ¢ 2 , then

-8 = 7T 1is representable exactly in the same format, and
will be computed exartly by any computer that conforms to
IEEE Standards 7354/854 for Floating-Point Arithmetic.

CompSuml WORK IN PROGRESS Oct. 26, 1993

(Nowadays almost all computers conform. Exceptions are mainly
clder designs like IBM /370s and DEC VAXs, which violate the
theorem only when S - T is so tiny that it underflows toc ©.0
although &8 # T . CRAY arithmetics are bizarre; they violate
the theorem also if |Si and |T| straddle a power of 2 and
whichever is the smaller has 1 in its least significant bit.)

An early proof of the theorem is on p. 138 of P. H. Sterbenz’'s

book " Floating— Point Computation " (1974) Prentice-Hall, N. J.
When sw/sw-: lies between 1/2 and 2 , and if arithmetic
obeys the theorem, then both rounding errors de = € = 0 3

and usually aw = O too because only the leading digits of cu.
are nonzero. Then compensated summation’'s result s, is usually

about as accurate as if at most a few terms x. were perturbed by
ane ulp, and then all terms were added exactly, and then the sum
rounded once. Accuracy like that is hard to Surpass without using.
hlqher—prec1slon arithmetic.

When computer arithmetic does not honor the theorem, compensated
summation works as advertised provided every sum and difference is

rounded to within an ulp or so. A few unconventional arithmetics
exist that comply with this proviso; some are simulations of
doubled-precision in software, and some encode numbers intermally

by sign-bits and logarithms of their magnitudes. But almost all
unconventional arithmetics, 1like ERAY's, subtract magnitudes as
if their last digits had first been perturbed, so a result after
massive cancellation may differ sigrificantly from the unperturbed
difference of nearly egual operands; - this invalidates compensated
summation. Despite its invalidity, it almost always improves a
sum’ s accuracy anyway, S0 ong might pelievé it always worked but
for counter-examples like the one I exhibited in " A Survey of
Errar—Analysis " in Proc. 1971 IFIP Congress, p. 1239 gt seq.

A cure for the invalidity on CRAYs 1is presented there too.

Example: A Slowly Convergent Series

When x. = exp(-0.620 1n(k)="2) the series L Xk converges very
slowly, but the quickest way to compute its first seven sig. dec.
is still the obvious way. The two-line program was run in single-
precision bimary floating-point arithmetic conforming to IEEE 754
on an IBM PC , and it produced the result s = 5.145586 after
4502 terms x. were added. Computation stopped there because
mare terms could make no difference; each subseguent x. would
have been too small to alter the sum s after it was rounded off.

Compensated.summation of 43502 terms.praduced 5.145461 , which
is correct so far, but the compensated sum s went further.

When should computation stop? That depends upon our estimate for
the remainder JIn% X« that is left after the first N terms have
been added. Such estimates come from approximations of the given
series by simpler ones that behave similarly enough as N —> w .
For example, if the given series were enough like a geometric
series we could use Xn®/ (Xfer—%Xn) to estimate the remainder.

CompSumi WORK. IN PRDGRESS Cct. 26, 1993

Our series has x, = 1/kP for p = (5/8) ¥(In(k)) , which grows
so slowly that replacing it by an apt constant for 2ll k > N >> 1
increases the sum of the series only moderately. From an integral
§ dx/xP that slightly overestimates J 1/kP. we find that

X2/ (x—r = xad (1 = 1/7p))
moderately overestimates the remainder if p = (5/8) (In(NJ}) and
N is big enocugh.

N had reached 219901 when that over-estimate first fell below a
rounding error in compensated sn = 5.14460556 , which matches S«
in all figures displayed. A smarter stopping criterion might have
saved a significant fraction of the time spent by stopping sooner,
but only compensated summation could save the last four figures.

Another computation of the series’ sum'on an 1IBM PC used IEEE
754 double-precision (53 sig. bits) but not so straightforwarg
a program as before; that would haveé taken more than 230,000,000
terms. Instead, the first two terms of something like an Euler—
Maclaurin summation formula supplied rigorous bounds for the
remainder, after which 4,000,000 terms sufficted to calculate

2. 1446056069715... as the sum of the infinite series, provably
correct in all digits displayed. Uncompensated summation would
spoil the last six digits computed (the last three displayed).

Numerical Quadrature

Mumerical quadrature approxamates an integral § +4x) dx by a sum
I v f(xe) of artfully selected samples F(x.) of the integrand,
with artfully chosen weights w. . Compensated summation permits
that integral to be approximated as accurately as the integrand's
atcuracy allows, provided enough samples are drawn. But without
compensated summation, attempts to impfove;accuracy by sampling
more densely too oftem fail, though samples are numer ous enough,
because . too much roundoff accumulates during summation.

Jrajectory Calculations : - _
A trajectory is the graph Df the solutlon y(r) of an ordinary
differential eguation with initial conditions:

yiQ) = yo and dy/s/dr = f(y,r) for = > O .
Here + is a given vector-valued function of the vector y and
the scalar 7 . The differential eguation is equivalent to an
integral eguation yir) = yo + S= f(y(8),0) dé . For small time-
increments Ar thls implies '

ylr+r) = y(r) + §z+or f(y(&),0) de ,

which resembles the formulas intended to compute a numerical
approximation Y(r) to vy(v) :

YCr+A1) 1= Y(1) + FAY(T),75 OT, 2uald OF
Here ¥ is devised in a way intended to approximate the average
of f along an unknown trajectory through Y(r) The quality of

that approximation, and conaequently the qua11ty of Y , depends
upon details of the formula F 3 all we need know now about those
details is that the guality is expected to improve as &ar — 0 .

However clasely F may apprbximate the desired average of + ,
roundoff can degrade it. Usually most of the damage occurs when
the " + " operation in the last formula above is carried out;

CompSuml WORK IN PROGRESS : Oct. 26, 1993

the rounding error nRY in that pperation amounts typically to at
worst about an ulp (a unit in the last place) carried in VY |,
and results in the computation actually of

Y (r+AT) YOr) + FIYC(7),7; OT, «aald &Y + Ry

YEr) 4+ (FOYCT),7y &7y wuud + nYZ0r Y OF

The lacst expression shows how pY¥/Hr contaminates the average F
as if f had been perturbed by a noise term RY/OHr that grows
worse as 4OHr —» 0, thus jeopardizing any expected improvement
in accuracy. ' : ' '

Fortunately, compensated summation suppresses 7Y almost as if
addition were carried out to about twice the precision actually
carried. 6&n auxiliary function . Cf¢r) propagates a correction to
compensate for the roundoff nY . Here is how it works:

Y(O) 1= yo 3 Ceo) 1= 0 ;

H = FoY@r) 7 o7, o) &+ C(1) 5 ... near enough.
YOr+Hr) o= Yer) + H 3 .. rounded off to Y(r) +H+ypY .
Cor+ar) = CY(r) =Y(vy+dr)) + H 5 ... & -5y .

L DON'T REMOVE PARENTHESES!

Provided the last subtraction and addition are performed exactly,
as almost always happens automatically, Cir+Ar) will carry the
previous addition’'s rounding error forward to the next occcasion
when Y is incremented, thereby compensating for the error.
Consegquently the accuracy of Y will depend almopst entirely upon
how well F° approximates the desired average of ¥ even if AT
is s0 tiny that many millions of additions occur. Let’'s see:

Example: Geing Around in a Circle
The differential equations

dx/dr = -y , dy/dy = x, x(0) =1, y(0) =0 ,

have solutions x{r) = cosr and vy(r) = siny . BGiven T > 0
and &rv = T/N for some huge integer N , we wish to compute

* x(T) and Y % x(T) from this algorithm:

1 3 H
For n =1 toe N d
{ X J= X — YX&r g
Y = Y + XENr ¥ 3
X 1= X — Yxar/2 .

In the absence of roundoff this algorithm would yield

X

cos(2N arcsin(Ar/2)) = x(T) = Ty(T) (ATYR/24 + ... ,
Y

sin(2N arcsin(Ar/2)) /costarcsin(Ar/2))
yi{T) + (T x(T) + 3Iy(T)Y (LHFI=/24 +

K nn

These formulas exhibit the error due to using a stepsize ar # 0
but not the error due to roundoff. Compensated addition gets rid
of the rounding errors in addition and subtraction, which do much
more damage than the rounding errors-in multiplication, by saving
“them in two auxiliary wvariables [Ckx and Cy thus:

EompSumi WORK IN PROGRESS . Det. 26, 1993

X =13 Cx =0 ; Y := 03 Cy =0 ;
Fer n =1 to N do
{H = Cx—Yk&r ¢ S &= X+H ;3 Cx = (X=-8)+H ; X (=8 ;
H = Cy+Xxr 3 - § 1= H+Y 3 CY = (¥V=-8)+H 1 Y = B I ;
X 1= X +

(Cx — YXxoar/2)y .

The foregoing is the simplest form of compensated summation. A
more elaborate form,: tried out only to confirm that it was not
worth trying because it got almost the same results, is this:

X3i=13 Cx =0 ; Y ;=03 Cy =0 3
For n=1 t N do))
{ Hi=Yk&r 3 8 1= (CxH+X 3 Cx 1= ((X-B)-H+x ;5 X =8 ;
H = Xkdr 3 S = (CytH)+Y 53 Cy 1= ((Y-S)+HH)+Ly 5 Y =5 3
Y o
X 1= X + (Cx - YkM/2) o

These computations were done in 1985 on an IBM PC in BASIC

-using first the BASICA interpreter, then the BASCOM compiler.

Results were obtained for X and ¥ in Single-Precision first

Uncompensated, then Compensated, and also in Double-Precision.
Single-Precision carries 24 sig. bits, almost 7 sig. dec.;
Double~Precision carries 56 sig. bits, almost 17 sig. dec.
BASICA rounds tarelessly; BASCOM rounds carefully.

RESLLTS obtained from the BASICA interpreter or the BASCOM compiler:

A 174094 1/40%6 116 e 111028 111024 174096
N 40940 40960 . 16000 16000 1023000 1024000 4096000
T = NM 10 10 1600 1000 1600 1000 1000

&P tnc. X -.B3BB4I0 -.B390557 4208555 .420B926 5069714 5623439 5623240
5P Lom. X - -.B3%0715 -.8390715 .4208943 4208918 .5623481 5623442 .5623770
D-P Une X -.B390715 -.8390715 .420891B 4208918 .5423463 5623082 5623770
x = cos{T) -,BI90715 -.B390715 - .5623791 5423791 .5623791 .5623791 .5623791

5P Unc, ¥ -.5840174 -.5840112 9075201 .9075522 .B247341 .B269045 ,B248734
§-P Com. ¥ -.5440211 -.5440211 ,9075516 .9075542 .B268%69 .8269020 ,BZ68809
B-P Unc. Y -.5440211 -.5440211 9075541 9075541 ,B269020 .B269020 .B24B807
y = sin(T) -.5840211 -.5440211 .B246795 ,B248795. .B248795 8268795 8248799

Which BRSIC 7 : BASICA BASCOW BASICA BASCOM BASICA BASCOM BASCOM

The results fram BASICA show compensation subduing massive
accumulations of error despite that it malfunctions occasionally
because BASICA rounds carelessly. BASCOM ropunds addition and
subtraction according to IEEE Standard 754 for Floating-Point
Arithmetic. Its results show that when rounding is careful the
rounding errors behave almost like random variates, tending to
cancel each other on average, so they accumulate spasmodically
and sluggishly; their effect grows more like N than like N ,
the number of time-increments Ar . Compensation wipes them out.
But the foregoing example is a little atypical because it suffers
no rounding errors during the computation of F .

CompSum2 WORK IN PROGRESS Oct. 24, 1993

When is Compensated Summation Worth the Bother?
That depends upon how the rounding error 1Y compares with other
errors. A Backward Error Analysis of the difference between the
desired solution y(r? of '

y(0) = yo -and dy/dy = ¢y, v)J for 0 < 71 < T
and the computed solution Y(r}) of ‘

Ye0) 1= yo and Y(T+AT) = YCT7) + FOYC(T) 73 T, <./} OT
reveals that Y(r) may be regarded as a set of discrete samples
of the exact solution Y(r) of an initial value problem differing
from the given one by three small perturbations:

YO0) = yo , dY/dy = £(Y(T),1) + ACT)(AN™ + BF + nY/AT - (X)

Here the three perturbing terms are_piecewise'continuuus functions
of 7 with the fellowing relations to sources of error:

ACT)(AT)™ is the local truncation error caused by using formula
F instead of the desired but unkrown average of f . The
“order" of the formula is the positive integer P . In the
absence of roundoff, this local truncation error would be
the only perturbing termg; it can be made arbitrarily tiny
if A1 is tiny enough.. (Strictly speaking, A depends
upon Ay and Y as well as v and F and f and vo, but
when Ar - is small enough it and Y can be overlooked.)

5F # (error during the computation of F A1)/Ar 3 we regard
this error as unavoidable. In any event, it need not be
reduced below the uncertainty in , which is itself often
a mere approximation that_modelﬁ some physical situation.

nY/f6r is the term that compensated'shmmation would eliminate.

(Because the perturbing terms are anly piecewise continuous, the
perturbed initial value problem (%) might better be recast as an
integral equation, but that is a technical detail that will not
alter our conclusions about compensated summation’s usefulness.)

Compensated summation appears toc pay off only when the term np¥Y/4r
in (%) rises above the two preceding terms enough to justify the
exra effort that its removal will cost. Sometimes no extra effort
can be justified: '

- Compensated summation is not worth the bother for a differential
equation y’' = § s0 strongly stable that its trajectory runs to a
terminus nearly independent of initial conditions; then all error
inherited from the perturbing terms in (X) decays rapidly. Nor
is the bother worth while for a differential equation so violently
unstable that only the earliest few perturbations matter. Little
is gained when so few timesteps Ar are needed to reach T that
a few errors %Y cannot add up to much, naor when arithmetic’'s
precision so far exceeds the accuracy required of Y(T) that huge
numbers of errors 3»Y cannot add up te much. These are the cases
when compensated summation does little good; " but it does no harm
either, and it does not cost much. '

. CompSum2 WDRK IN PROGRESS - Oct. 26, 1993

How much does compensated summation cost? A handfull of extra
arithmetic operations will not be noticed unless F is almost as
cheap to compute as in the Example of circular motion above. A
more significant cost comes from allocating memory to hold vector
C¢r) as well as Y(7) . The memory itself is cheap; what costs
extra is the time it takes to move C(r) as well as Y¢r) about
in memory. If the vectors’ dimension is huge, and if F takes
just a few arithmetic operations per component to compute, that
extra time will be noticeable; but in cases like this the number
of timesteps is usually huge and the accuracy saved by compensated
summation justifies its cost. Formulas F that tolerate 1larger

(and therefore fewer) timesteps Ar are generally complicated,
often reqguiring an estimate for 2f(y,7)/By as well as Fly;r)
then compensated summation adds negligibly to cost.

Compensated summation pays off when very many timestesp Aor are -

needed to reach a goal Y(T) +that depends upon initial conditions
Yc0) , and when F can be computed accurately enough only by
using the computer’'s widest hardware-supported precision. Among
such situations are simulations of the evolution of planetary
systems, long-term computations of orbits of debris launched with
satellites, and chemical reactions.whose products depend upon
initial! concentrations of many reagents. Their trajectories are
at worst weakly unstable, with errors that, at least initially,
grow no faster than a polynomial of low degree as they propagate.
The payoft+ is highest when the timestep &r is so tiny that F ar
amounts to a small fraction of Y . Consequently, no payoff can
be arbitrarily great because Ar need never be smaller than small
enough that the roundoff term BF dominate the truncation error

ACr) (AP in (¥) above.. The more elaborate the formula
F , and then the higher its order P , the more modest can be the

payoff from compensated summatiomn; but then its cost becomes
relatively more modest too. : : ‘ :

Compensated summation can be adapted to higher-order differential
equations and to multi-step numerical algor:thms provided two
principles are respected: :

1. Whenever possible, exploit exact cancellation of differences
like Yer+hr) — Y(T1) to generate no new rounding errors if
Yitr+dr) and ¥Y(r) are close. (Recall the Theorem abhove.)

2. Think of Y(r) + C(r). as an approximation to vy(r) computed
at higher precision-than Y¢r) , but not computable directly
because Y(r) + C¢r? rounds { usually) to Y(r) , so it
has to be used indirectly. :

For example, one algorithm to solve a second order differential
equation y" = f(y) may be expressed conventionally in the form

YOr + Ov) s= 2Y(7) = Y(r — Ov) + F(Y(r), O7)OT= .
Roundoff obscures F badly, to an extent proportional to &/47%,
unless compensated summation is used, which is accomplished by
rewriting this algorithm thus: : '

49 M

CompSum2 WORK IN PROGRESS Oct. 246, 1993

H = (Y (r)=Yir=Lr)) + (C(a)-Cler—Or))) + FeYird, AT)&TZI;
YOT+AT) 1= Y(1) + H 3 - o
Elr+dr) 2= (Y(v) = Y(7+A7)) + H .

Compensated summation’'s principal justification is that it allows
the error in Y to be analysed and controlled more easily because
it is inherited almost entirely from the error inherent in F due
toc its own roundeff and to the size of Ar .

History — @& Comedy of Errors

5. Gill invented compensated summation to parfnrm long trajectory
computations on the EDSAC at Cambridge, England, 1in the late
1940's. His paper in Proc. Camb. Phil. Soc. 47 (1951) p. 96-108
was widely appreciated but more widely misunderstood. Proof that
it was misundersteood comes from texts published in the 1960"'s
that recommended the " Runge-Kutta-Gill " method but presented
its formulas in a way that did not compensate for roundoffy for
an example see formula 295.5.12 on p. 896 ‘of the Handbook of
Mathematical Functions, ed. M. Abramowitz and Irene A. Stegun,
National Bureau of Standards Applied Math. Series 55 (1964). -And
if the formulas had been presented correctly, they would not have
"worked - in floating-point arithmetic, "which had become commonplace
by the late 1950's. Gill had devised his scheme for the Fixed-
Point arithmetics ubiguitous among the earliest computers; - his
scheme became obsolete by 1960 and is now disadvantageous.

The first compensated summation algorithme intended for flpating-
peint were published simultanecusly in 19463 by R. Mdller in
BIT and by me in Commin. ACH, and the material has figured in
my lecture notes for numerical analysis classes ever since. But
hardly anyone else in America +took much notice of the idea.

Throughout the 19460's, expert solvers of differential eqguations

" knew " that the best achievable accuracy was achieved at some
" optimal " stepsize & . At larger stepsizes, the error got
worse as Fl...) ‘diverged from the desired average of Ff(...)

like some positive power of &r . At smaller stepsizes the error
got worse like a multiple of /47 because the number of steps,
and the accrual of rounding errors, ‘were proportional to i1/4r7 .
{ Look again at the perturbed initial value problem (%) above.)
Texts plotted a U-shaped graph of Total Error wvs. GStepsizes
see It nowm on p. 31 of Screntific Computing and Differential
Equations by 6. H. Golub ‘and J. M. Ortepga (1992) Academic
Press, N. Y. But the conmtribution of 1/4r to that graph is
spurious and is removed by compensated summation, after which the
graph of Total Error levels out, as Ar diminishes through
practicable values, at a level determined by the irreducible
uncertainties 8F in the computation of each F(...}) .

Will Rogers said that we suffer less from what we don't know than
from what we " know " "that isn‘t so. That may well explain what
IBM did in 1967. At stake was a contract to supply computers to
NASA. Competing with IBM were CDC and UNIVAC, both of whose
computers copuld perform synthetic higher—precision floating-peint
arithmetic with some measure of hardware support that IBM /340s

11

CompSum?2 WORK IN PROBGRESS T QOct. 2&, 1993

lacked. And NASA insisted upon higher precison than IBM's 16
C roughly } sig. dec. IBM responded with the new 3460/83 which
introduced an " Extended " (Buadruple-Precision » +format good
for about 31 sig. dec. with nearly full hardware support; only
division needed software. That format persists in to-day’'s . IBM
/370s, and is mimicked by a counterpart in DEC VAXs. But over
the past two decades hardly anybody has used it, and hardware
support for it has mostly atrophied without detracting noticeably
from sales. Those " Extended " formate appear to have appeared,
at great expense, before their time. Why did NASA insist?

During a SHARE (IBM Users’' Group) meeting in 1972 or 1973,
1 eavesdropped upon a conversation at the bar. { I'm teetotal.}
At issue was the arithmetic precision needed to achieve about B8
sig. dec. accuracy during very eccentric orbit calculations with
hundreds of millions of timesteps. It seemed that 16 sipg. dec.
precison was inadegquate, but 31 was more than enough, albeit
too slow. Compensated summation was not being used; otherwise,
by & rough calculation, 16 sig. dec. precision would have been
ample, and IBM's and -DEC's - " Extended " precisions need not
have been born prematurely. :

Nowadays, because of larger memories, - trigonometric functions
can be computed to high accuracy faster than formerly, so orbit
calculations that used to be performed in Cartesian coordinates
can now be performed economically in Polar coordinates, which
fluctuate less wildly than Cartesian. Consequently bigger steps
Ar and fewer of them can be used, so0 less accuracy is lost,

NMowadays, the predominant computer arithmetics behave much better

than they used to 23 vyears ago. To begin with, the predominant
format used for orbits now is REARLXB with 53 sig. bits (more
than 19 sig. dec.) whereas precision then could be 27 tao 35é&

but was most often CDC's and CRAY's 48 sig. bite (14 sig.
dec.). Marecver, roundoff used to be accomplished predominantly
by chopping, which is statistically biased, 50 error usually
accumnulated in proportion to the number of steps; nowadays almost
every aluyebraic operation is ctorrectly rounded in an unbiased way,
so errar often accumulates in proportion to the square root of the
numbher of steps. 'In short, roundoff is less troublesome now than
formerly, so old programs get better results than they used to.

Mowadays, computers have far wmore memory, run far faster, and
cost far less than they used to, so0 orbit calculations proceed
far farther than they used to, and far more errors accumulate.
But, =so far as I know, all major software packages for solving
trajectory problems still do so without compensated summation.

Further Reading

Only the simplest form of compensated summation has been presented
here. Other methads, and some more applications, were surveyed
recently by N. J. Higham in " The Accuracy of Floating Point
Summation " p. 783 - 799 of SIA#M J. Sci. Comput. 14 (July 1993).
In *» Roundoff error in long-term orbital integrations using
multistep methods ", soon to appear in Celestial HMechanics and

12

CompSum2 WORK IN PRDBRESS Dct. 26, 1993

Dynamical Astronomy, Gi: D. Quinlan .finds Backward Difference

(rather than algebraically equivalent Multistep) formulas and

compensated summation vield better accuracy than the other schemes
he tried on a simple orbit calculation; here backward differences
produce less error partly because they are smaller than the values
differenced and partly because the act of differencing introduces

~usually no new rounding erreors, thanks to the Theorem above.

That idea can be extended to provide practically arbitrarily high
precision in portable software written in any common higher-level
programming language; see " Algorithms for Arbitrary Precision
Floating Point Arithmetic " by D. M., Priest, PFProc. 10th Symp.
on Computer Arxth. (1921) ed. by P. Kornerup and D. Matula +or
the IEEE Computer Soc. Press, Calif. For much more detail see
Priest's FPh. D. thesis " On Properties of Floating Point
Arithmetics: Numerical Stability and the Cost of Accurate
Computations " (1992) Math. Dept., Univ. of Calif. at Berkeley.

Altogether different schemes, based upon arbitrarily wide integer

arithmetic even if implemented in floating-point, work better for
extremely high precisiomn computation. The best portable software
for this purpose, written entirely in Fortran, has been placed

in the public doamain by Dr. David Bailey of NASA/Ames over the
past few vears; see ACH Trans. on Hath., Soft 19 (19%93) 288-3197,
or obtain software and documentation by electronic mail from

' mp-request@nas.nasa.gov .

Conclusions _

Compensated summation is an inexpensive way, surely cheaper than

higher precision, to protect protracted sums from inaccuracy due

solely to the process of summation. It ic applicable to infinite

series, to numerical qguadrature, and to trajectory calculations,
all of which sum large numbers of small increments, and has been

proved valid whenever flaoating-point arithmetic . behaves the way

intuition would lead one to expect. I always use it. Why doesn’'t
everybody? Either compensated summation is still too little known
or there is something wrong with it that I still do not know.

Acknowl edgment

The foregoing material has been assembled from lecture notes for
my courses in Numerical Analysis going back almost thirty years.
For much of that time I have been supported by the U. S. Office
of Naval Research, the National Science Foundation, and/or the
Dept. of Energy. Current contract numbers are N C0014-90-J-1372
{ ONR) and ASC-9005933 (NSF).

Work remaining to be done for this paper:
Recompute the infinite series more accurately, and explain the
Euler—-Maclaurin—-like approximation.

Replace BASIC programs by Fortran,” and illustrate how biased

rounding’s bias is eliminated, and what happens after many more
millions of steps around the circle. What about a real orbit?

13

