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ABS TRAC T

 The IBM ACRITH package of numerical
software is advertised as reliable and easy to
use; but sometimes its fesults must astonish or
confuse a naive user.. This report exhibits a
few of the surprises. For instance, a-finite con-
‘tinred fraction, easy to evaluate in two dozen
- keystrokes on a' handheld ‘caleulator, causes
-ACRITH to overflow either exporment range or .
15 Megabytes of virtual memory. - Lacking
- aceess to source code, we must speculate to
. explain the anomalies.  Some seem attributable
to small bugs in the code; some to optimistic
claims or oversimplifications: in the code’s docu-
... mentation; some to flaws .in the. doctrine
underlying  the code. - We: . conclude that
different. techniques - than . used. by - ACRITH
might have been about as -accurate and yet
more economical, robust and perspicuous:

Introduction

This is a report, prellmxnary and. very llkely to
change; on.the "“High-Accuracy Arithmetic Subroutine
Library” ACRITH offered by IBM for izse with. their V8
Fortran. An imminent new release of ACRITH may not
have the same bugs as we .found when ‘we ran Version 1
Release 1 Modification Level 0 of ACRITH: on our IBM
3081K. ‘And our speculative inferences, necessitated by
" lack of access to source code; may have to be revised
should more. information - about. the algorithms .actually
used in ACRITH be released after thls report’s first ver-
sions. appear.

The laudable mtent of ACRITH appears to ‘be- the

provision of reliable numerical results, accurate to. very

nearly the last: digit displayed, for a selection: of
pumherical tasks encountered by people whose expertise;

however refined in other ‘aréas, does not include nimeri-
. cal ertor analysis.

regardless - of - roundoff, cancellation,

uses Interval Arithmetic, a facility described in several
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Ideally, results should be correct:
C ill-condition " or
numerical instability. ACRITH employs “two strategies’
to a.pproach this ideal. First, to deliver for each desired
result either an interval that surely contains. it, or else 4
warning that no such interval could be found,. ACRITH
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books (Alefeld and Hertzberger[l}, Moore|2} and Rokne
and ‘Ratschek[3]): and not controversial. Second, to
deliver narrow intervals that define its results aceurately,
ACRITH must . exploit extra-precise. anthmet;_c_, for

_whlch the necessm.r is indisputable.

What is controversial is the way ACRITH performs
extra-precise: . .arithmetic. It requires- a  Super-
Accumulalor to caleulate scalar products. exactly, as -
prescribed in the book (6] by Kulisch and Miranker, and
applies it agccording to a methodology described in an
IBM Symposium [7] edited by them. Also disputable are
some of the claims in the promotional literature (9, 10]
for- ACRITH, it does not always solve problems so
cleanly as: that literature suggests. Here are examples:

Matrix: Multxpllcation — ACRITH always computes
a product of two matrices accurately with every element
of the product correctly rounded;. that is the foundation
of ACRITH’s methodology. Now suppose we needed
comparable accuracy in the final produet of several
matrices, - It could not be achieved by simply invoking
ACRITH's matrix muitlply repeatedly; trying that could
produce utterly inaccurate results because the roundoff
in the first multiplication, albeit correctly rounded, could
be amplified by subsequent multiplications. Something
else has to be done. In accordance with the methodology
advocated by Kulisch and Miranker [8], Rump [11} and
Béhm [4} for computmg polynomials, we tned to calcu-
late the matrix product by solving an enormous triangu-
lar system of linear-equations, but that tock hundreds of.
times too long and delivered inaccurate results. Finally
we devised a qulck and short but devious method to get
correct results; but is- most unlikely to occur to the naive
users targeted as potentlal customers for ACRITH.

Matrh: Inversion -— The accurate inversion of a
2121 Hilbert matrix, with its condition number over
10%, is a pl’OdlglOllS accomplishment for a program that
allegedly- carries only about 16 s:gmﬁcant decimals for alt
intermediate variables, .In demonstrations st symposia
like the one at the Mathematics Research Center in
Madison Wisconsin in Sept. 1084, in ACRITH's General
Information Manual (9, pe. 31}, a.nd in scientific papers
on its 'methodology (Rump, [7, pg.53, pg.68]), that inver- ‘
gion is portrayed as typical of the way ACRITH tri-
umphs over problems that would confound conventional



methods. But when we shuffled the columns of that Hil-
bert matrix ACRITH could not invert it even though
shuffling columns does not affect the condition of a
matrix. ACRITH refused to invert a 7X7 matrix that
was inverted accurately in each of single-, double- and
quadruple-precision arithmetic by standard LINPACK
[34] library programs. ACRITH either refused to invert
or obtained pessimistic estimates for inverses of certain
3% 3 matrices that are all obviously well-conditioned by
its own definition [10, pg.10]. None of the matrices

mentioned so far is typical of matrices that walk in off

appear otherwise to be inconsequential changes in data.
We found a well-conditioned matrix that ACRITH
inverts in times that ehange by a factor larger than ten

- when, the matrix is reflected in its skew dlagona.l

the street every day to be inverted, but they are all good ) .

examples of thé pathologies that justify -ACRITH's
existence. Neither can the results cited above be
declared typical of the way LINPACK or ACRITH
might handle similar examples We know LINPACK's
success with the 7X7 example was a fluke because we
koow from LINPACK's published source’ code -how it
typically copes with various pathologies. ACRITH's typ~
ical behavior is unpredictable because its sotrce code is
unavailable for erifical scrutiny.

Real Zeros of Polynomials — The ACRITH pro~

cedure DPZER O purports to locate a real zero of a poly-.

nomial given its coeflicients and a guess- at ‘the zero.
What is claimed for the procedure (10, pg.54] is that it
will bracket the zero inside a relatively narrow interval
unless the procedure reports that such an interval cannot
be found. We found a polynomial of degree 13- whose
real zero 1/3 matched our guess to several significant

deeimals, but DPZERO produced :the wide interval -

[1/8, 1/v3] as a Tesult without comment.

We got
better results than that on a handheld calculator. :

Arithmetic Expressions — ACRITH contains two

utility programs, FTRANS and FEVAL, that purport to
evahlate arbitrary rational expressions to “high acecn-
racy” 19, pg.47] {about 15 significant decimals) despite
whatevar cancellation may ccenr in' intermediate caleula-

tions, provided no over/underflows occur. However, rela--

tively simple polynomials and rational ~functions,
expressible with fewer than 50 keystrokes, can cause
ACRITH to overflow 15 Megabytes of memory; and
simpler rational functions can cause ACRITH to fail
because of foating-point overflow beyond about 107
even though the desired rational function and all its
subexpressmns lie between 0.001 and 1000. ‘The only
pathology in these examples i is that ACRITH doesn t like
thers.

Speed — To achieve more teliable compntation than

they thought was afforded by conventional’ rodalities,
the designers of ACRITH were willing to sacrifice some
speed. The extent of that sacrifice is hard to gauge, and
hard to reéconcile with their claims [0, pg.35] that
ACRITH is usually not much worse than six times as
slow as conventional ealculation. The rational expres-
sions mentioned above took thousands of times longer
for ACRITH to compute than would kave been required
for quadruple-precision. Worse than that is the unrépro-
ducibility of execution times in the face of what mlght

further study.

although the effect of this reflection upon the inverse is
merely to swap its first and last diagonal entries.

Evidently ACRITH is neither efficient nor reliable
énough to be embedded in an engineering application
and left unattendéd. The same might be said of much
numerical - software most of which would not repay
- ACRITH is distinguished by extraordi-
nary claims made for its reliability [0, pp.1,3,11,35; and
10, pp.ii,11] and for the rationale {9, pg.3; and 11]
behind its methods. We seek to understand how that
rationale helps or hinders progress towards ACRITH’s
goals,

Multi—Preclsmn V8. ACRITH

To. keep this report sell’—contamed we shall not:
resort .to the -terminology introduced by Kulisch and
Miranker |8 and. 7} but shall instead deseribe how
ACRITH’s approach to extra-precise caleulation differs
from conventional wisdom. -

Adequate’ support for certifiably reliable computa-

tion cannot possibly be derived from only the data types
ARRAY, INTEGER /REAL /COMPLEX, and

"SINGLE/DOUBLE PRECISION proffered by the most
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popular computer languages. They lack the essential
ingredient INTERVAL. And if, instead “of merely
announcing that a‘preblem is'too nearly pathological, we
wish to solve it, then the extra ingredient we need is
EXTENDED PRECISION, -extended to an- extent
coarsely controllable by a programmer. Note that no
amount of high precision is enough by itself to guarantee
correct results; error-analysis is necessary too {16], and
autornatic error-analysis.is practical only with Interval
Arithmetic. Increasing precision, like increasing memory,
serves solely to diminish the set of problems that cannot
bé solved, and hence must submit to a law of diminish-
ing returns. The probability that higher precision will be
needed to solve problems declines exponentially with the
wordlength, whereas. the time. consumed. grows super-
linearly, especially for division. To compute efficiently,
programmers must. employ high- preciszon arithmetic par-
simoniously.

If a programmer knew in advance where high preci-
sion will be needed and how much will suffice, he could
use’ compile-time declarations to allocate. statically as
much: memory as that needed precision requires. But
then, if he guessed wrong, he might have to recompile
with - revised . declarations and recompute.. Another
approach. is to determine adaptively at run-time how
much preciston is needed, which entails dynamac memory
management and its associated overheads, which matter
only when the precision in use is not very high, which is
most of the time.  Evidently, managing high precisions
efficiently can be complicated.



Kuliseh and Miranker [8 and 7} would cut through

those complications. Numerically naive computer users
are to be provided with a- library. of pre-programmed
procedures. for all their computational needs. The imple-
.mentors of that library are to be protected from needless
complexity by a methodology that forbids explicit men-
tion- of any higher precision than is being used to store
input data and to display final results. Therefore extra-
precise : calculation must occur surreptitiously, hidden
within the subterfuges enumerated in the following sec:

tion. OnIy ‘the first of them is- untannted by controversy :

ACRITH's Methodology

1. Tterative Refinement is used to' compute in each
iteration, a correction term. that reﬁnes the ‘accuracy
of 'what was computed in the previous.iteration.’ -

2. Every variable is approximated implicitly to extra

precision by an unevaluatéd sum of correction
terms, each term much tinier than its predecessor,:

and each represented exactly to the same precision
as the data.. Only as ‘much’ precision as is needed

appears to be provided, perhaps limited by a prior

static alloeation of memory for the terms; but the

schems is obliged to re-evaluate the same scalar pro-.
- ducts repeatedly -during iterative reﬁnements 80 it

does waste time.

3." Iterative refinement requires resxduale that reveai-

how much an” approximate -solution dissatisfies the

>‘equations to be solved.- By a mechanical translation .

process, each variable can be replaced symbolically

by the sum of corrections that approximates it; and -

. then residuals can be expressed in.terms of scalar
products of correction terms. A Super-Accumulator
- is..introduced. to - evaluate such. scalar products
exactly, despite massive cancellation, before round-

ing them:to the same precision as the data; there.:
fore rtesiduals can almost always be. caleulated as.

accurately as needed fo obtain one more correction

term.. But the trans]ated expresslons are cumber-

some,

4. The super-eccumurlator is gthé: onl-y‘ site in ACRITH.

where extre.-preciee arithmetic is - performed expli-
. citly. Moreover, .in its pristine form. the methodol-
ogy prohlblts any : reference to the super-
accumulator other than 4o round off the exact value
of a scalar product. Consequently multivariate

‘polynormals cannot be “evaluated ‘with' the aid of
products- of extra-precise intermediate results, nor’

by rapid recurrences with arrays ‘of - extra-precise
‘accumulations, but must be caloulated slowly via

. nested iterative reﬁnements using at. any mstant.

~only one  extra-precise entjlty, - the
accumulator,

ACRITH can evaluate ‘it accurately regard]ess of
how inauspicions that transformation may -be.

super~ -
Finally, since the super-accumulator
‘sums products but cannot cope with quotients,
almost .every ~rational fumection must -’ be first
- transformed into a ratio: of polynomials ‘before -
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- The foregoing overview of ‘our view of ACRITH
would :probably not persuade a champion of ACRITH’s
methodology to change his mind, but it may explain why
we searched whére we did for anomalies that, once
found, undermine cohﬁdence in ACRITH’S reliability.

How reliable i IS ACRITH"‘

Software is consndered reliable to the extent tha,t it
conforms to reasonable expectations. Ideally, reliable
numerical software never misleads, almost always works
efficiently, and fails to cope efficiently only with prob-

_lems that lie near or beyond the boundary of what is

economieally feasible with the resources available: But
this ideal is too much to expect in general. " At best, this
ideal can be’ approached to a degree that depends upon
the prowess of programmers, the clarlty of explanatory
documentation, the modesty of promotional claims, and
the skills and perceptions of the software’s users. They
form- a' picture of the ‘software's effective domain,
bounded perhaps by a ‘no man’s land in which perfor-*
mance’ is unpredictable. Typical examples, good and
bad, can serve as landmarks to delineate that domain
experlmentally when it cannot be revealed by analysis.

Lacking source code to analyse, we cannot describe
ACRITH’ s effective domain w1th conﬁdence If we were
told only that ' :

. “The key feature of any of the algonthms of
. the ACRITH Subroutine Library is that all
- results are absolutely rellable, that ‘means that

- no false result is possible.” (10, preface],

orif the error codes listed in its documentatlon were our
only guide, we might infer that ACRITH delivers simply
either ‘an ervor code or else an interval containing each
desired  numerical result. But Interval Arithmetic
w1thout a. Super-Accumulator already does - that, espe-
cially if nobody cares whether intervals are as accurate
(narrow) as the data warrants, whether results appear
quickly, whether correct usage requires special skills, nor
whether error messages appear often when the data has
no intrinsic pathology, ACRITH's archltects aimed
higher.

“The routmes provrde solutxons w1th hlgh accu-
_.racy which could not be achieved previously

with conventlonal means, . High . accuracy
means that maximum tolerances for the exact
solutlon of a specified problem are delivered .
which’ differ’ only in the Iast. ﬁgure of ‘the
mantissa.” |10, preface]

That’ should allay any qualms about 3ccuracy As Ior

speed

"'The run time performa.nce of the ACRITH
routines is generally of the same order of mag-
nitude as of conventional ones. ... For instance,
a run time increase by a factor of 6 to 8 rela-

“tive to a widely-used conventional routine was

“measured for solving a system of linear equa-

" tions of order 100 in double precision.” [0,
pg.35].



’I‘he factor of 6 is roughly what S. Rump- (5, pe.41]
predicts from theoretical consrderatrons Who can use
ACRI’IH'? -

..évery FORTRAN programmer who is writ-
ing programs to solve linear and linearized
problems of numerical algebra. ... A reasonably
experienced FORTRAN ‘programmer = with
some background in numerical algebra ..'."’ [0,-
pg-45]. -'

No mentxon of error ana.lysrs as a requn'ed sklll On the
contrary,
“If the situation is prohlbltwely ﬂi-condltloned _
the user will be told by a return code and an
error message of his routines. Thus he will
“always be safe in his computations.” [¢, pg.11]
. “If overflow occurs in an algorithm, usually
no result can be computed. This condition is
caught with the error indicator * IER.
Underflow generally does not exclude the com-
putation of a correct result -of an salgorithm,
. but may influence the accuracy of the result -
that means the width of the resulting intervals. = .
This condition is not’ cons:dered an error.” [9,

pg33.

Apparently underflow may deg’rade ACRITITs. accuracy:'

to the extent that, for instance, 2 caleulated value z that
should be zero may instead be located in “an interval
e<z <¢  where the underflow ~ threshold
€ =16 = 540107,

data does not deserve.
These claims for ACRITI and its inethodology are

formidable; and ‘they are backed by widely published [4,

8, 7 and citations therein] examples over all of which

ACRITH triumphs, whereas conventional- methods fail
allegedly for lack of a super-accumulator. Are these trx-'

umphs typical of the results we could all’ enjoy 1f we
adopted its new arithmetic methodology?

Triple Matrix Product, P = A.BC

ACRITH’s procedure DMAMB computm the pro-
duct of two matrices to. full aceuracy, but no procedure
built into ACRITH computes the product of three
matrices’ accurately. - Can such a 'proceduré be devised

easily? ‘ '

Three matrices A, B and C were constructed with
ostensibly random mteger entries subject to the require-

ment that ABC' = 0 but AB .0 and BC 7# 0. These:

matrices were scaled to possess large entries, but not so.

large as to cause overfiow while ABC‘ was being caleu- -

lated. Here they are:

s

12 13 -1 .11 -6 10
23 34 11 -12 | 9 -2 20 10|

A=al v 5 4 3| B=Pl 7 3 0 s
24 35 -11 13 3 -5

10, -1

Otherwise there is no indication
that ACRITH might produce an error message that the

125 4 -3

0o 4 e @ = 2058788401083655 #16'°.

. b oTe ‘ _ . 10
C =+ e 3 10 g where A —@550699367084357-*10

S ~ = 5146971002709137 *16'°

Gonsider ‘the  calculation of P = ABC. - The

straightforward . approach calculates T .= AR, then
P == TC, where the products are performed using the.
ACRITH - matrix - multiply - routines - DMAMB  and
DIMAM, and stored to double precision. This method's
results, -presented in -the first line of table "P = ABC"
below, are very  inaccurate because actually
T = AB - R, where R consists of roundoff, so the value.
computed for Pis ABC.— RC = -RC, which is huge.

.Since P = ABC' is a polynomial in the elements of
A, B and €, ACRITH's methodology can be invoked to
evaluate P by solving a lower triangular system of equa-
tions, using iterative refinement to achieve full accuracy
Here is such a system o
8 [ ) - l 1

where ‘the entries are all square matrices: The agccuracy
and the speed with which ACRITH calculated - the
matrix product P using this method are tabulated in the-
second line of - table “P =— ABC" below, in which
€= 1675 is the smallest positive number representable
in double precision. Evidently both the time taken and
the accuracy achieved are disappointingly worse than a
naive.user might have expected from ACRITH's docu-
mentation. What has gone wrong?. -

We suspected that ACRITH did not notice that the
systemr was triangular but, instead, performed Gaussian
elimination with pivotal exchanges, thereby converting
the -equations into: something grossly ill-conditioned.
Consequently, iterative refinement was slow to _converge
and stopped prematurely. ‘

To avoid ‘what we thought had gone wrong, we
reformulated the problem as ai upper triangular system

-1 0y (Py 0)
44 5115- 13).
_ 0 -1 VX i
The results of this calculation are presénted in the third

line of table “P = ABC" below. The tlme was much
better, but the accuracy much worse. ‘

Here is a better way to use ACRITH’s matrix multi-
ply procedures to compute P = ABC. Define:

T = AB(rqun’ded}; R .:=(A —l) (‘?1], “and
o By . e
1f(;A_._1 —15)[1{]:0 then, P :=('r R)(g)

else_ ' (subsequent refinements were not needed ) .

These formula.s conform to the Kulisch-Miranker discip-
line; but at- the cost of computing AB three times. We
rearranged the formulas slightly to compute AB only
once by referring directly to the super-accumulator; this
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renegade algorithm is the one _whose results appear in
the last lme of table “p = ABC" below.

P = ABC: .‘-I‘riple Matrix Product .Calculations

Method Typical Element of P | Execution Time
(AB)C [-10%,10% 008
Lower Triangular -10%L, 0™ 307. ¢
Upper Triangular: 1611, l(l‘1 ] 34
Reneeade 0.0 007

Times are in seconds on an IBM 3081K. o

The elements in table “P = ABC" above are typi-
cal of the elements found in P after the various methods
were tried; .the mterva}s returned by the first three
methods were all within a factor of about 10 of the typi-
cal element shown there, ‘and for the fourth method P
was exactly zero.

The .calculation of. P 1llustrates a problem that
arises whenever .two of ACRITH's procedures are .com-
posed. Even if the errors in the first procedure’s. output
are confined to the last digit delivered, they can be so
magnified by -the second procedure as to swamp. the
desired result. That is what happened when the error R
'in the first product AB was expanded. into RC by the
second product. To avoid such error magnification, the

first procedure’s result could .be passed as a multi-.
precision entity, a series of corrections, to the second:
procedure; but ACRITH's procedures are not designed to.

accept multi-precision inputs. Instead, a new procedure
has to be devised from scratch to accomplish the desired
result. We think this problem exposes a fundamental
flaw in ACRITH's methodology; anyway, it might well
defeat a naive user.

Inverting The Hilbert Matrix

When 1 is large the n-dimensional Hilbert matrix H
is well known to be extremely ill conditioned. The ele-
meote“ of H ‘are [(H )--(k/(:+] -1)) - Hor
1<i,5<n. Stnct]y speakmg k should be 1 but, to
avoid dxstractmg rounding errors when the elements of H
are constructed in the computer, 1t is customary to
choose k' = Icm(l 2,3,.,9n-1). Here lem is, the least
common multiple functlon This definition makes the
entries of H integers representable exactly prov1ded nis

not too large. The elements of kH! are all integers too,
and their calculation is a standard test for ﬂoatmg—pomt'

matnx inversion routines.

Among the “Typieal Scenanos
motional literature [0 pe.31), and among the ‘examples
that are cited [11, pg. 68] to vindicate thé Kulisch-
Miranker methodology,
ACRITH's inversion of a 21X 21 Hilbert matrix H on an
IBM machine carrying only about 16 significant decimaly.
for ‘all intermediate calculations except the ‘scalar pro-
'ducts in the super-accumulator Since H has a condition
number over 10%%, this is s phenomenal accompllshment
-if lt ls truly’ typlcal Could it be an accident?

in. ACRITH’S pro—'

pride of place: belongs to’

Exchangmg columns of a matrix merely exchanges
coi-respondmg rows of its’ inyerse w1th no change to its
condition number. After we swapped colurmns 1 and 19,
2 and 18,3 and 17, ... of H, ACRITH refused to invert it
but signaled mstead “The ‘matrix is extremely ill-

~ conditioned or singular; no inclusion could ‘be’ com-
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puted.” So ACRITH’S performance upon H is not typ:-
ca.l o

. We cannot say what kmd of performance is typical
for ACRITH because we do not know what method it
used to invert H. We do know that the algorithms
Rump described in [ll Pg 62, pg. 85}, and which mlght
have been presumed to have produced the Tesults for H!
he presented three pages later, are not the aigorlthm
ACRITH uses. We tried them; they cannot improve an
approximation ' to H! by iterative refinement unless that
approxxmatlon is HY itself exactly Besides, during a
conversation in Madison ‘Wisconsin in Sept. 1984, Rump
admitted that the results in- his paper were not obtained
by -the methods deseribed theréin but by some others he- -
could not describe because they were “Proprietary.” We
have tried to guess what ACRITH does and, with Dr.
K:=C. Ng's help, have devised algonthms that iteratively
refine trlangular factors of H before using them to com-
pute an’ ‘approximation to H~ -1 that can subsequently be
lteratlvely refined: Such an algorithm seemed capable of
failing ot “succeeding’ caprlclously depending upon the
orderlng of the columns -of H." Much better algorithms
are easy to find, especially by one willing either to

-exploit the IBM 370's quadruple-precision hardware or to

aceess the super-accumulator in'a renegade way contrary
to. the Kullsch-eranker doctrme, but they are not the

,subject ‘of this’ report

Another Atyplcal Exnmple

- The numerous examples ‘that show how ACRITH
triumphs ‘where mundane methods fail are clouded by
the sus_p1c10n___that some of them may bhe atypical

_Therefore a potential user must diseover by trial and
‘error what- ACRITH- can do.. Such trials can mislead

too. Consider-the following matrix D devised:along lines
suggested by Prof. James W.. Demmel of New York
Unwers:ty 'S Courant Institute: o

-

2

We set p = 2714 and submitted D to be inverted on the
IBM 3081K. in. single-, double-.and quadruple-precision
respectively by the ‘pairs- of standard LINPACK [14]
library routines SGECO and SGESL, DGECO and
DGESL, and QGECQ and QGESL. (The last two are

obvious adaptations of the two before.) The computed



inverses were all correct to the Tast digit of their respec-
tive precisions, as was verified by comparison with an
inverse computed symbohcally On the basns of thls
expenence, D seeins we]l—condltloned

ACRITH’S procedurm INV and. DINV [10 pg 65
pg.67] perform ‘‘Inversion of a smg]e [double] preq_:lsmn
point matrix with high accuracy.” (A “point matrix” is
one whose elements are all ordinary numbers rather than
intervals.) Both procedures 31gnaled ‘that D is too ill-
conditioned to permit an inverse to be calculated. How
can this signal be reconciled with the correct’ inverses
returned by LINPACK" LINPACK _‘al:_l'd ACRITH are
both ng;ht' ' o o

The . condltlon number of D is ".roughly
48/p* ~ 3.5#10'%, just beyond what can typically be
inverted using IBM's double-precision format (14
significant hexadecimal digits) to_hol_d..triangular factors
and other intermediate results. However, D.is so con-
trived that in single- and double—precxswn LINPACK's
rounding errors will cancel out, leading to an atyplcally
correct. result; and in quadruple—preclslon LINPACK
commits no roundlng error at all. On the other hand,
ACRITH commits a rounding error forced upon. it-by the
Kulisch-Miranker methodology, and D is so. designed
that the roundmg error - blossorns desplte the super-
accumulator. ‘D is just that roundmg error. away from
singular, so ACRITH's warning is. deserved; almost -all
matrices so ill-conditioned as D lie beyond what we
believe i is ACRITH'S effective domam '

Suppose a numerieally naive programmer wnshed to
invert matrices accurately; how. .might the foregoing
results influence his choice between' ACRITH and, say,
LINPACK? Given results only for H (the Hilbert matrix
of the previous section), or only for D, he might chioose
badly. - Given. both resuls, and: results for H with
columns swapped: too, ke would realize with diminished:
naivety that neither H nor D exhibits ACRITH's potency
fairly. Too many of the examples published to promote
ACRITH and .its methodology seem. unfair that way;
they intimate that ACRITH never fails to deliver: fully
aceurate results unless some extreme pathology -in -the
data justifies a waruing mess'age instead. : They afford no
hint that a no man’s land of innocuous problems may
exist where ACRITH gives maccurate resu]ts, OF MONe, or
takes far too long

Two Well-Condltioned Matrices

The extent to which a matrix ‘is well- or ill-
conditioned can be measured in several mathematically
équivalent ways. One is the _condition number
AM} ="Ml MY, where || - - - || 'is some matrix norm
that measures the overall magmtude of a matrix analo-

gously to the length of a vector.. A second is the relative

nearness of- M to singularity;” the-singular matrix  §
nearest M lies at a distance [I§ - MII-—HMH/'y(M)

roughly. : A ‘third is the extent to’ whlch relatwely smaIl'

perturbations AM can become magnified by inversion;
when - ||AM is " tiny

" enough, -
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(M + AM)™ = MUIM can be about as big as
M)l AMI/IMI but not much bigger. This is quant:-
tatively what the next quotation means: :

“Tf the solution value changes onIy moderately
at a specified charige of a certain data com-
ponent the: problem is - well-conditioned with
respect to this component If alarge cha.nge in

_ the solution value is induced the problem is -
conditioned with respect to this data com-
ponent.” [10, pg.10]

Regardless of how he understands this quotation, a pro-
grammer must find the next ones reassuring:

“‘One of the unique advantages of the ACRITH
‘Subroutine Library is the generation of highly -

" acceurate and verified solutions even in cases of
‘extreme ill-conditioning.’ The observed -
changes in the computed solution values are

. -exclusively due to the ‘specified changes in the

¢ data. ... This will particularly cover the mahy =~

. cases ‘where "the ill-conditioning has iradver-
tently been introduced . through an ‘incon-
gsiderate formulation of the mathematical model’

. {for example, by poor scaling) but is not an

- intrinsic property of the situation.” [10, pg.11).

“"Lét M be- & tiny number: we wused
X =16 =2 2.3+10"%. When X is' small the matrix M
below © s very well-conditioned - because
AM) = ﬂM ||-[|M“1” < 5 for the commonplace norms:

N a1y ‘ 1 1 <2
Mﬁﬂr—l ‘1 “l‘l M= 2‘5‘21'3 11 1=
A

2102 14+ 2

Changing M very slightly to M + AM changes M-
very. - slightly . to
M+ AM) M‘ + M“AMM‘ For
instance, va.rymg the elements of M each in its twelfth
51gn1ﬁcant decimal will-vary the elements of M~! each in
its eleventh or beyond but not in its tenth. This well
COIldIthII was confirmed by ACRITH when we submitted
the interval matrix [(1- 16 T)M, (1 + lﬁ”g}M} to pro-
gram DIINV, “Inversmn of a double precision interval
matrix with high accuracy” [10, pg.68], which produced
an ‘intérval inverse whose interval elements each had
endpomts agreelng to eleven sxgmﬁcant ‘decimals.

Let the diagonal matrix A= dlag(l/k X N) a.nd
define T.= AMA. This amounts to scaling the rows and
columns as if the units used for_ variables had been
chariged from, say, m;lllmeters to miles, except that the
scale factors in A 'are all powers of 16 to avoid rounding
eftors om a hexadeclmal IBM machine. Conseguently
T-! = A 'M-'A"}'is obtained by the reverse scaling of
rows and colimns and should be computed as such
desp:te rotndoff.” Indeed, T is as well-conditioned as M’
in the sense that varying the elements of ¥ each in its
twelfth s1gn1ﬁca.nt decimal will vary the elements of T
each in its eleéventh or beyond, but not'in its ‘tenth.



Therefore T is well-conditioned by ACRITH's criterion
quoted above, and this stiould have been confirmed when
we submitted” ~ ‘the = interval . matrix
(1= 16707 (1 + 16%T] to DIINV. Instead of inter-
vals with endpoints agreeing to eleven. significant
decimals, as the ‘data deserves, DIINV produced
grotesque intervals with endpoints in all cases over five
times too big and with opposite signs! No warning mes-
sage. ‘Not so accurate as was tic
above. What has gone wrong?

We think ACRITH’s failure here was caused by
three bugs, all founded upon a misunderstanding of the
matrix ‘norms. 1Ideally; the norin apt for any specific
situation should have roughly the same value for all’ per-
turbations regarded as about equally (injconsequential.

The usual norms, like the root-suin-of squares norm,

have this property for most endfigure perturbations of

M, but not for similar perturbations of

T=1]1 -3 2}
1 .52 0

In those norms, endfigure perturbations of T’'s lower
right corner 2X2 submatrix look negligible compared
with endfigure perturbations of the first row and column.
To make the usual norms measure perturbations aptly,
T must be rescaled until it inore nearly resembles M; but

ACRITH does not rescale correctly, if at-all. Conse- -

quently, ACRITH selects the element “'2” as a pivot dur-

ing Gaussian elimination, causing. rounding errors. that.

wipe out A% this is the. first bug. Wiping out A2 makes
T look singular, or very ill-conditioned,. so iterative

refinement converges too slowly and terminates prema--

turely with no warning; this is the second bug. The
third bug is the omission, from ACRITH's documenta-
tion and claims quoted above, of any warning that scal-

ing problems are handled no better by ACRITH than by

most conventional linear equation solvers,

A Polynomial Equation

‘Bad examples make bad generalizations. Many. of

the examples, published to show where conventional
floating-point arithmetic is inferior to ACRITH and the
Kulisch-Miranker methodology, come with comparisons
of resulis obtained from simple programs versus results

obtained for the elaborate programs that implement that -
methodology- 7, pg.30-46, 53, 66-68, 73, 79; 134-136; 0.
PE.7-9; -8, 'pg.i4-18; '12]. At times the comparisons

resemble .an attempt to infer, from the observation that
a_Diesel locomotive can pull a heavier train than a
coolie, that the ecoolie must be weaker .than the
locomotive’s engineer. But two of the cited publications,

(8, pg 15| and [12, pg.168], . invite comparisons with-
handheld. caleulators. That sounds like a sporting propo-..

sition.

promised in the quotations

P(z)=15943232"°~ 69087332 + 138174662"! - 188801450
+ 140733452 - 84440072° + 375289227 — 125096425
+ 3127412° - 570152% + 77222 - 70227 + 39z — 1

i5-3 polynomial that reverses sign-at = = 1/3 and van-
ishes nowhere else. ACRITH has.a program to locate z :
““The subroutine DPZERO ‘computes bounds
ZL., ZR. of high sccuracy for a real zero of the
polynomial P which is near a specified approxi-
mation ZETA. That means that P(ZL)-and
- P(ZR) are. mot of equal sign and that the
. difference’ between ZL arnd ZR is small, .. If
- . the zeros of ‘P are extremely ill-conditioned {if
. -two’or, more zeros are. between two successive
-floating-point numbers) the inclusion may fail.”.

- [10, pg.54] G _
(DPZERO’ issues : IER=3 to signal ‘that *“Inclusion
~ failed” whenever. it cannot find: values ZL

s

_ : and ZR that =~
straddle a place z where P(2) reverses sign.) ' ‘
We submittéd: P and various guesses ZETA to

DPZERO; from values like 0.333...3333 and. 0.333.. 3334

for ZETA we got always an interval like'[1/9,1//3 ] for
[ZL, ZR]. Although that intétval does contain the zero
= 1/3, its endpoints are inexplicably farther from the
zero than the first-guess ZETA. No error was signaled;
DPZERO set TER=20 to indicate “Normal end.” ‘
.~ We must expect to lose some accuracy because
P(z) = (82 ~1)"%." " Therefore, il roundoff . causes
P(z) £ ¢ to be computed in place of Pfz), we should
expect estimates like (1 + €/1%)/3 to turn up for the
zero. In effect, we expect to get only. about one thir-.
teenth as many correct significant digits for a thirteen-
fold zero as are carried during the calculation of Pfz). If.
the super-accumulator’s accuracy were unbounded there
would be no loss of accuracy when the zero of P was cal-
culated. However, values of |P| below the underflow
threshold ¢ = 1675 are flushed to 0, so we expected esti-
mates: like (14 ¢/1%/3 = (1 & 16)/3 for the zero
from DPZERO. We do not kmow what bug caused
DPZERO to deliver ZL = 0.1111--- and ZR
0.5773 - - *:instead. .Neither can DPZERO say anything
about how.many times P(s) reverses sign in ZL < z <
ZR except that the number must be ‘odd. o
‘The Hewlett-Packard HP-71B handheld calculator
{15] -carries twelve significant decimals for its floating-
point variables, and with its HP 82480 Math Pac ROM

_(part no. 5061-7226) it conforms to the proposed IEEE

standard .p854 [13] for floating-point arithmetic. For .a
start’ we submitted the coefficients of P to a program
PROOT in the Math Pac to obtain estimates of all. 13
(c'omplexl) zeros of P. As expected, the estimates -all
agreed with z = 1/3 to at least 12/13 of a significant
decimal. . Next, a BASIC program that computes P(z)

“from its- coefficients was submitted to a “program

FNROOT in the Math Pac, and the real zero of Pfz)
was estimated from varions starting guesses analogous to
ZETA. - Since - directed roundings (OPTION ROUND
POS and NEG) are built into the calculator, we used



them during the calculation of P{:r) to get lower bounds
ZL ranging from about 0.26 to 0. 27 and upper bounds
ZR from -about 0.42 to 0.43 for thé' zero, depending on
the starting guesses, Thus have we verified by a compu-
tational mathematical proof that P{z) reverses sign an
odd number of times between ZL and.ZR.- For this
polynomial P(z). the HP-71B calculator’s. bounds are
tighter than ACRITH's; we ‘don't think that 1mplles the
calculator is the more. powerfu} engme

Ra.tional Expresslon Eva.luntion

“The subroutines FTRANS, FEVAL and FDELET
allow the evaluation of authmettc expressions’ with high
accuracy. ... This holds as long as no over- ot underflow
occurs.” {10, pg.47]: Any rational expression in FOR-
TRAN syntax ecan-be submitted to ACRITH's FTRANS
procedure to be transformed into what is essentially a
ratio. of two multivariate polynomials: for subsequent

- evaluation by FEVAL. Each polynomial. is. evaluated as
the solution of a triangular system of formally ‘linear
equations ostensibly solvable to arbitrarily high accuracy

by iterative refinement using a super—accumulator to cal-

culate scalar products exa.ctly After the two polynomi-
als have been computed accurately enough their quo-
tient may be obtained almost equally aceurately with
one division. 'Details may be found in [4]. This scheme
underlies the claim [8, pg.49] that the Kulisch-Miranker
methodology is applicable umversally, . polynomlals
and then arbitrary arithmetic expressaons can be
evaluated thh maximum accuracy (the validation step
mcluded) " and then equations can be solved to evalu-
ate algebralc functions, and then transcendental funic-
tions can be” approx;mated as usua] by algebralc func-
tions. The obvious defect is that the same calar pro-
ducts have to recalculated in the  super-accumulator
again and- agam during iterative refinement, but this
defect is mild and avoidable by renegade algorlthms like

our ABC multiplication above that accessed the super-
accumulator dlrectly Leéss obviouis is the potentlal for

overflow latent zn the transformatlons Here a.r.e_exam-

ples

. Let r(z) be the root nearest Lof the cublc equatmn
z)? == 1. . When z is big that root r(z).

{ r—1)r-1+
is closely approximated from -above and below respec-
tively by the two continued fractions ..

Pl =14 Ufz + 1z % mx + _1}(:‘ + 1SPPPR
and : . . ) . .
gz} =1+ ll(z + 1f(z + 1f(= + 1/(= + 1](3 + 1,/::2)2)2}2)2]2
Their values at 2 = 5 and z = i? are dlsplayed below

Formula stz —5 - atz =17 . .
HP-TIB's f{z} | 1.03937 732815 "171.00345 88002
HP-71B's gfz) | 1.03037 732811 ' 1.00345 88002

r(z) 1.03937 73281139, - |. 1.00345 880002251,
ACRITH's f{z} | 1.03937 7328150982 | Exponent Overflow !
ACRITH's gfz) 15 Megabytes = Insufficient Virtual Storage -} .

The HP-71B.  evaluates f{z) and - gfz} satisfactorily

. throughout 0 < z < oo, including values z like 107499

. Dgla) = 2% 4 0221237_*_

< 1088 < 5[28.

and 10%%9; and does so in less than a, second for all but
the most extreme z's. FTRANS took over twelve
seconds on' the IBM 3081K to translate ffz) into a form
that took FEVAL about two seconds to evaluate when it
was not thwarted by overflow beyond 165 = 7.237#107
in someé intermediate _expression. Overflow would have
thwarted FEVAL: at" 9(5) too had not FTRANS first
exhausted 15 Megabytes and almost six minutes working
on it,

To explam why such ta.me expressmus turn so fero-
cious inside ACRITH, we need merely exhibit them as
ratios of polynomials. f{z) = I + Nf(z}/Df(a:) and

glz)y =1+ Ng(:r: /Dg(z) where

N[(z) = 2% 4 282%. + 3542% 4
+ 5130962% - . + 1082°

Df(z} =z + 302% + 407zv56
+ 1020523232 + -+ 2432% +:22:° + 2%

Np(z) = 2 +-602' 4 1714712 4 :
+ 38001768889232% + - - - + 970" + 4427 4+ 2t ;

1831z'% + '

-+ 881z°

+ 20:: + l ;)

+ 82771632488487% + + 42z3 +1 .
Obkusly FEVAL overflows because 175> T8 > 16"ia
But we have no idea of how FTRANS
overran 15 megabytes

‘Were examples like these hard to find, the defect
t.hey expose in ACRITH's methodology- might be toler-
able; We fear such examples may be abundant. ~Con-

- sider a familiar Chebyshev polynomial:
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Todz) = cos (64arccos z)
' ==: cosh (64arccosh z)
=L S S 2 2 2+ 2R

‘A handfull of keystrokes can caleulate T64(:r} ob a hand-
‘held calculator, but only the last expression’ can be fed

to ACRITH, and when that is'done FTRANS munches
for almost seven minutes on an IBM 3081K and then
overfiows 15 -Megabytes' memory. again. Naive program-
mers might feel less bewildered by the event if they saw

Todz) = 9223372036854775808.1: - 47573952589676412928: +

: +_.6456334894356662059008;” - -20485% 4 1 ,

but they - would be no-less appalled. - And if overflow does

not stop the: computation, ‘a programmer might wonder .
how to-explain why FEVAL can take perhaps a million
times longer than conventional quadruple-precision arith-

metic to get a result no better for expressions like these.

(We obtained the expllcit polynomial representation
of ‘the foregoing functions in two ways. . We ran Prof. D.
Stoutemeyer’s muMATH-83, obtainable form the Soft
Warehouse in Honolulu or from. Microsoft in ‘Bellevue
WA, ‘on an IBM PC; several minutes sufficed for each
function. . We also rap the local symbol manipulator
VAXIMA on a DEC VAX 11/780 for a few seconds to
confirm the results.}



o

A Timing Anomaly

- How predictableare the times that ACRITH ‘spends
in its own programs! We tested the matrix inversion

procedure DINV on two nxXn matrices A and B whose'

inverses differ in what we thought is an mconsequent!al
way, but it isn’t. Let Ay == min(i,j)
By = n+1 - maz(s,§); each is obtailied from the other
by reflection in its skew dmgonal thus, shown for n=5:

11111 (543 21
1 2.2 2 21 4 4.3 2 1
A=|12 3 3 3], B=133321
1 2 3 4 4 2 2 221
12346 11111
Their i.n.versa are tridiagonal matrices related the same
way: '
2-1 0 0 0 1-1 00 0
-1 2-1 0 ¢ -1 2-1.0 0
Al=|0-1 2-1 o|,B'={0-1 2-1 0
0 0-1 2-1 0 0-1 2-1
¢c 0 0-1 1 00 0-1 2

These inverses differ only in that their first and last diag-
onal entries are exchanged. However, the results com-
puted by DINV differed in two other ways. The times
DINV took to invert the matrices on an IBM 3081K are
displayed here in seconds for n=20 aad n=40:

Times for Inversion
n AT B
20 0.27 2.99
40 1.44 18.44

Why does ACRITH take over ten times as long over

B as over A? Part of the reason becomes clear when the
second way in which the inverses differ is noticed. A~'is
computed exactly, presumably because all intermediate
results were integers and no rounding error was gen-
erated during Gaussian elimination. Therefore no itera

tive refinement was needed to clean up. - But during the .

inversion of B Gaussian elimination generated rational
numbers that had to be rounded off. Consequently the
first estimate of B! was only approximate, and jiterative
refinement had to be carried out to get refined estimates.
The final results are all tiny intervals, the tiniest possi-
ble, and quite satisfactory. Unfortunately, iterative

refinement had to be carried to great lengths to push the
off-diagonal elements down into underflow to achieve
such near perfection. It is a pity that ACRITH could

not know that we would not have cared in this instance
had iterative refinement stopped much sooner.

In general, different users may have different noticns
of what accuracy is adequate. ACRITH cannot read
their minds, so it is obliged to go for maximum accuracy
every time. This matters a lot only when some com-
ponent vanishes in an array of results, because then
maximum aceuracy is limited not by a modest. number
of significant digits to be displayed, but by the underflow

and -

threshold. Here is. one aspect. of: accuracy mana.gement
that cannot he brushed away; the problem is not just. to
find a way to calculate somethmg as accurately as m:ght
be needed, but also to know when to stop. .

Conc[uslons

ACRITH's percewed reliability, and therefore lts
utility, are jeopardized because malfunctions . like
gverflow, inaccurate results, error warnings or extremely
slow execution cannot be attnbuted correctly to some
blameworthy - pathology. in the. data. To say that
ACRITH is  correct. in the sense usually understood for
crude Interval Anthmetlc which i3 to say that when a

‘result appears it is always an interval that contains the

desired result is not good enough such a claim could

" mean no more than that. a machine was wired to prmt

quadruple-precisio_n dinterval arithmetie,

out only the interval [ —o0, oo]" ACRITH promises
more than that, more than could be claimed for crude
but too_often.
delivers less. ' ‘ '

ACRITH is not at all typlca,l of IBM products but

' seems instead first to have escaped prematurely from a

research project and then to have evaded quality con-
trols.” We think its bugs can probably be repaired, but -
most likely not without abandoning ‘restrictions: upon
access to the syper-accumulator imposed by a doctrine

* that forbids -explicit mention of extra-precise variables.

And :then, partly because of experiments performed for
us by P. Tang, we expeet that ACRITH's goals will turn
out to be achievable more economically: with the aid of
something like quadruple-precision interval anthmetlc
than with a super—accumu]ator If that happens it will
vindicate our judgment that ACRITH'S methodology is
generally. not a good way to manage extra—premse arith-
metie. ) . .

To prevent mlsundersta.ndmg, we repea.t that the
management of extra-precise arithmetic is at the core of
our disagreement with' ACRYTH's doctrine. Except for
that, we share most of ACRITH’s goahs and much of its
overall strategy:

o . Iterative reﬁneinent usmg contractwe mappmgs to‘
. make a good guess better; .- . .

e Extra-precise calculation as needed to get accept—

.. ably accurate results;

e Interval arithmetic to know for sure when results
are accurate enough

" We think ACRITH's defects are consequences mostly of

Can unnecessanly complicated approach to its goals.
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Our conclusmns contrast starkly with the doctrme-
promulgated by Kulisch,” Mirankér and their disciples,
and accoutred in a vast panoply of algebralc termlnology
and theorems. “If we are right, where is the flaw in their
theory? They have proved that their methodology is in

_principle suﬂiclent to -compute everythmg computable,

but -not that it is’ mecessary nor that it is efficient nor
that it is intellectually more economical than the:lore in
the vaster literature that precedes and surrounds theirs.



Their theory suffers from what might be called Algebraic
Intransigency, a lack of 2 kind of tramsitivity,
specifically, ‘scalar produets of scalar product.s of scalar
products ..
super-a.ccnmnlator their doctrine allows, then symbolic
constipation in the algebraic tramsformations thelr doe-
trine demands

Acknow]edgments

We have benefitted greatly by conversations wnth
Dr. J. W. Demmel (now at New York University), Dr.
K:C. Ng, Prof. B. N. Pa.rlett,'_' and P. Tang at the
University of California in Berkeley, and with Dr. A.
DuBrulle, Dr. F. N. Ris and Dr. S. Rump of IBM.  We_
would also like to thank the IBM ‘Corporation Ltd. and
the Digital Equipment Corporation for contracts and
grants which partially supported thls work

References

Interval Arithmetie .

1] Alefeld G. and Herzberger, 1. “Introduction lo
Interval Cpmputatwna Aca.demlc Press New York
(1074).

[2] Moore, R.E.: “Methods and App!scatlané of Interval

Analysis.” SIAM Studies in. Apphed Mathematics,
_ SIAM, Philadelphia (1979).

Rokne J. and Ratschek, H.: “Computer Methoda for
the Range of Functwus ” Halstead Press, New York
(1984).

ACRITH Methods

14] Bshm Harald: “ Evaluation of Arithmetic Ezpreasmm
with Mazimum Accuracy,” in (7] pp- 121-137.

Kaucher E. and Rump S:M.: “E-Methods for Fized
Point Egquations [ (x) =g,"” Computmg, Vol. 38,
pp. 31-42, (1982). .

Kulisch U. and eranker W.L.:

‘metic in Theory and Practice.”
New York {1981).

Kulisch U. and Miranker WL e'ds'
Approach - to’ Scientific Camputatwn
Press, New York {1983),

“Kulisch U. and Miranker W.L.: “ The Arithmetic of
the Digital Computer.” IBM Research Report. RC
10580 (#47356) 6/15/84 (1984).

High-Accuracy Arithmetic, Subroutine. Library,
General Information Manual, [BM Program Number
5664-185 (1083). ' .

High-Accuracy Anthmetnc, Subroutme lerary, Pro-
gram Description and User's Gmde, IBM Program
Number 5664-185 (1983).

{11] Rump S.M.: ““Solving Algebra:c Problems with ngh
Accuracy,” in [7} pp. 51-120.
(12] Rump S.M.: “Wie zuverlasslg smd dfe-. Ergebmssc
unserer Rechenanlagen?,” Jahrbuch Uberbheke
Mathematlk, pp. 163-169, {1983)

8l

[5]

“Computer Arith-
Academic Press,

[6]

“A New
Ac_ad'emic

g
g
9

[10

. induce first numerical constipation in the one -

331

Mlscellaneous

[13] Cody W. J. et ok “A Proposed Radiz- and Word-
' length-mdependent Standard .. for. Floating-Point
. Arithmetic,” IEEE MICRO 4, no. 4 pp. 86-100,
' (Aug. 1984), o .
[14] Dongarra, JJ Buneh, J.R.;  Moler, C.B. and
. Stewart, G.W. “LINPAC’K Users’ Guide.” SIAM,
Phlladelphla (1979)

[15] HP Journal 35, no.7, (July 1984),
[16] Kahan W.: *Interval Arithmetic Options in the Pro-
-posed IEEE’ Floating Point Arithmetic Standard,”

Proceedmgs of a Symposium on Interval Mathemat-
ics, pp. 99-128, Academic Press, New York (1980).



