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Abstract:

 

It seems unlikely that two computers,  designed by different people  1800  miles apart,  would be 
upset in the same way by the same two floating-point numbers   65535.···  and   4294967295.··· ,  
but it has happened.

 

Introduction:

 

Do you have a favorite number?  Some folks like  7 .  Many avoid  13 .  A few are averse to  666 :
“ Let him that hath understanding count the number of the beast:

for it is the number of a man;  and his number is
Six hundred threescore and six.”   

 

Revelations

 

 13:17

Such prejudices would be considered unseemly among  Numerical Analysts,  whose  “Equal 
Opportunity Employer”  attitude towards numbers may be all that distinguishes us from  
Numerologists.  Among computers,  a predilection towards one number is considered a fault,  
caused perhaps by a burnt-out transistor.  An aversion to one number occurs so rarely among 
computers that no plausible explanation for it comes to mind.  But it has happened.

My story begins with an idea that turned out not to be good enough to deserve explanation in detail.  
It required an estimate for an integer,  an  Order of Convergence,  which,  to be useful,  had to be 
a small positive integer best not over-estimated.  To generate that estimate,  my program used  

 

Directed Rounding

 

,  a feature available in all hardware that conforms to  IEEE Standard 754  for  
Binary Floating-Point Arithmetic,  albeit unsupported by almost all compilers.  My program 
computed a floating-point number  H(x) ,  guaranteed to under-estimate the desired integer despite 
roundoff,  and then rounded it up to the nearest  2-byte  integer  j  thus:

 

j  :=  RoundUpToInteger( H(x) ) .

 

Then  j  was tested;  when it was negative or too big,  it was discarded;  otherwise it served in an 
indexed branch   ( a  

 

Computed

 

  GO TO ···  in  Fortran )  to a subprogram intended to accelerate 
the convergence of a presumably  (j+1)th-order  calculation involving  x .

My program did not accelerate convergence much and sometimes retarded it,  so the idea explored 
by the program would have been deemed worthless except for one puzzling instance among its 
results:  my program ran inordinately slowly in one instance when convergence should have been 
extremely fast.  There appeared to be a bug in my program.  Had that bug degraded acceleration?  
If so,  the idea being explored had not been given a fair trial,  and might be worthwhile after all.

I could not find the bug.  I distrusted the compiler but,  poring over assembly-language listings,  
could find no fault with it.  Days and nights turned into weeks of scrutiny of redundant calculation,  
auxiliary calculation,  exploratory calculation,  divide-and-fail-to-conquer,  ··· .

It had to be a bug in my  hardware,  a  PC  based upon the  Intel 386.
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Two Computers Better than One:

 

An  Intel  Pentium

 

·

 

  became available.  I have written elsewhere about its notorious  FDIV  bug;  
this turns out not to be germane here except that,  while exploring its peccadillos,  I ran my program 
described above and got practically the same results as before.  The discrepancies were compatible 
with end-figure differences in the transcendental functions computed differently on  Pentium  than 
on prior  Intel  processors.  Besides,  the computer on which my program had first been run used a  
Cyrix 83D87  in place of an  Intel 387  numeric coprocessor.  Cyrix  and  Intel  employ sufficiently 
different algorithms for their floating-point operations that their close agreement was tantamount 
to a jury verdict against my program:  it was guilty of harboring a bug.

I could not find that bug in my program.  I gave up looking for it.

Meanwhile,  Intel's  Jon Marshall  found an occasion to mention that  Pentium's  FDIV  bug might 
not be its only defect.  Its  Store-to-Integer  instruction  FIST  deserved scrutiny too.  To test it,  I 
wrote a program  FISTest  that explored all its  

 

singularities

 

  ( boundary cases ). (*)

 

Conversion to Integer:

 

FIST  converts a floating-point number to a  2's-complement  binary integer  2  or  4  or  8  bytes 
wide,  as selected by the programmer,  in accordance with  IEEE 754.  That standard requires the 
conversion operation to take account of the prevailing direction of rounding —  

 

to_nearest

 

,  

 

to_zero

 

,  

 

upward

 

  or  

 

downward

 

 —  unless it is overridden by the programmer or by language 
conventions.  Most languages have such conventions;  for example,  Fortran  rounds integer 
conversions  

 

to_zero

 

,  so the compiler has to either change the prevailing direction of rounding 
before conversion and restore it afterward,  or else choose a special conversion instruction if the 
hardware provides one for that purpose.  I had learned for previous programs how to override the 
compiler's override,  so it posed no impediment to writing  FISTest  programs for  2-  and  4-byte 
integer conversions.   ( My compilers lack support for  8-byte  2's-complement  integers.)

What happens when conversion produces an integer too big to fit into the selected  2's-complement  
destination?  IEEE 754  is a little vague about that.  The most common outcome,  if computation 
is not interrupted,  is that the  

 

Invalid Operation Flag

 

  gets raised and the oversize integer gets 
supplanted by the biggest in magnitude that will fit into the intended destination and has either the 
same sign  (Motorola 68xxx)  or a negative sign  (Intel x86/87  and  Cyrix 83D87).  Such an 
outcome serves the purposes of the assignment to  j  in my buggy program,  so integer overflow 
could not cause that bug I could not find.  Or so I thought.

FISTest  found otherwise.  Whenever   H(x) = 65535.···  rounded up to   65536.0 = 216 ,     Pentium's  
FIST  set  j  to  0  instead of  -215  as  Intel's  and  Cyrix's  specifications require.  When  H(x)  
rounded to any other integer bigger than  215 - 1,  or when  H(x) = 216   exactly,  FIST  set  j  to   
-215  correctly.  The number   216  was disliked only when  FIST  stored to  2-byte  integers;  for 
storing to  4-byte  integers,   4294967296  =  232   replaced  216  .  The  83D87  did likewise and 
more;  its  FIST  stored  0  also when rounding down to  -216  into  2  bytes,  to  -232  into  4  bytes.

That explains the bug in my program;  it was not in my program.   It was two bugs in two different 
hardware designs but with the same effect.  How two competing manufacturers could admit such 
similar yet different bugs into their hardware is still unexplained.
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Where are those bugs now?

 

Imagine the temptation to do nothing about them:  each manufacturer could have excused inaction 
by citing a need to maintain compatibility with the other.  Almost.  Actually,  remedial actions were 
under way before either manufacturer learned about the other’s infestation.

According to  Bob McGhee  of  Cyrix,  only the earliest versions of the  83D87  suffered from those 
bugs.  FISTest  has found nothing to complain about in a current version.

According to  Intel’s   

 

Pentium Processor Specification Update

 

   ( Order no. 242480-001 )  dated  
February,  1995,   Pentium’s  FIST  bugs had been removed from  75-,  90-  and  100-MHz  
Pentiums  dated  1994  or later,  but had not yet been removed from  60-  and  66-MHz  Pentiums.  
Moreover,  that document reveals another bug that my first versions of  FISTest  overlooked:

Pentium’s  FIST  rounded the fractions  

 

±

 

0.0625 ,  

 

±

 

0.125  and  

 

±

 

0.1875   to integer  0  
regardless of the rounding direction requested by the program,  so rounding away from  
0  failed to produce  

 

±

 

1 ;  and the  Inexact  flag required  ( perversely,  I think )  by   
IEEE 754  was set incorrectly for those six numbers too.  Intel’s  recommended work-
around is to use the  FRNDINT  instruction  ( RouND to INTeger-valued  Float )  first.

These bugs appear to have arisen when  Pentium’s  FIST  algorithm was  “optimized”  to save time 
wasted on redundant shifting by the algorithm used for  FIST  on earlier  Intel  80x87  and  486  
chips,  which did something like  FRNDINT  before storing.  New circuitry must have been 
introduced to round off fractional bits independently of the circuitry that rounds other floating-
point operations.  What  (il)logical design could create an aversion to six innocuous fractions?  
What testing strategy could be expected to expose such an aversion without foreknowledge?

 

Conclusions:

 

Notwithstanding the foregoing misadventure,  the best way to distinguish a bug in software from 
a system bug is still to run suspect software on two appropriately different computer systems.  And,  
for all that a reader’s confidence in tests must be shaken by the foregoing account,  testing remains 
the only way we know to corroborate both the designs believed correct and the alleged proofs of 
their correctness.  Seeking out singularities remains the best strategy for economical tests,  though 
it does depend upon foreknowledge of singularities both intrinsic,  in the function being tested,  and 
accidental,  in the function’s implementation.  Without foreknowledge about how  FIST  was 
implemented,  FISTest  could not reasonably be expected to discover that three isolated fractions  
1/16 ,  1/8  and  3/16  are mishandled.  ( FISTest ’s  current version finds them.)  And without  some 
foreknowledge about the implementation under test,  a test program can too easily use an algorithm 
that coincides accidentally with the tested implementation’s,  thereby sharing its defects.

On the other hand,  a test program can be corrupted by too much foreknowledge if thereby the tester 
and the implementor share a misconception.  I see no easy way around the dilemma here.

Testing works best on designs created with testing in mind.  That kind of design is still more of an 
art than a science.  To cultivate this art among designers,  they should occasionally be assigned the 
task of testing other designers’ creations.  To rotate creative design engineers through diverse 
assignments  –  design,  testing,  manufacture,  marketing support  –  is neither common nor popular 
as a personnel policy,  but it does produce better products and better engineers.

 

(*)  FISTest  is available to anyone who sends me a floppy diskette for it and a stamped self-addressed envelope.


