COSASIN.TXT 28 Jan. 2008

Computing 1 - s2 Accurately in Binary Floating-Point

Suppose $0 < s = \sin(\theta) < 1$. We wish to compute $c := \cos(\theta)$ from s as accurately as we can from formulas $c^2 = 1 - s^2 = (1-s) \cdot (1+s)$. Which formula should we use to minimize rounding error? Let formulas $F0(s) := 1 - s^2$ compute $1 - (s^2 \pm \delta s^2) \pm \delta c^2 = c^2 \pm E0 \cdot \epsilon$ and $F1(s) := (1-s) \cdot (1+s)$ compute $(1-s \pm \delta s) \cdot (1+s \pm \frac{1}{2}\epsilon) \pm \delta c^2 = c^2 \pm E1 \cdot \epsilon$ where $E0(s) = (\delta s^2 + \delta c^2)/\epsilon$ and $E1(s) \approx \frac{1}{2}(1-s) + (1+s)\delta s/\epsilon + \delta c^2/\epsilon$.

Assume \in := NextAfter(1, + ∞) - 1 , as is the case for MATLAB whose eps = $1/2^{\circ}52$, and that arithmetic is rounded correctly "to nearest".

Evidently E0 is smaller than E1 if s is small enough, and E1 is the smaller if s is close enough to 1. We seek a threshold σ optimized to minimize our rounding error-bound if we use F0(s) when $0 \le s < \sigma$ and F1(s) otherwise. $\sigma = 3/4$ because ...

- If $1/48 < s < \frac{1}{2}$: $1/8 < s^2 < \frac{1}{2}$ and $3/4 < c^2 < 7/8$. In E0, $\delta s^2 = \frac{1}{6}$ and $\delta c^2 = \frac{1}{4}$ so E0(s) = 5/16. In E1, $\delta s = \frac{1}{4}$ and $\delta c^2 = \frac{1}{4}$ so E1(s) $\approx \frac{1}{2}(1-s) + \frac{1}{4}(1+s) + \frac{1}{4}$. Evidently E1(s) > E0(s), so use F0(s) to compute c^2 .
- If $\frac{1}{2} < s < \frac{1}{2}$: $\frac{1}{4} < s^2 < \frac{1}{2}$ and $\frac{1}{2} < c^2 < 3/4$. In E0, $\delta s^2 = \frac{1}{2} < s$ and $\delta c^2 = \frac{1}{4} < s$ so E0(s) = 3/8. In E1, $\delta s = 0$ and $\delta c^2 = \frac{1}{4} < s$ so E1(s) $\approx \frac{1}{2}(1-s) + \frac{1}{4}$. Evidently E1(s) > E0(s), so use F0(s) to compute c^2 .
- If $\sqrt[4]{} < s < \sqrt{3}/2$: $\sqrt[4]{} < s^2 < 3/4$ and $1/4 < c^2 < \sqrt[4]{}$. In E0, $\delta s^2 = \sqrt[4]{} \in$ and $\delta c^2 = 0$ so E0(s) = $\sqrt[4]{}$. In E1, $\delta s = 0$ and $\delta c^2 = \frac{6}{8}$ so E1(s) $\approx \sqrt[4]{}(1-s) + 1/8$. Evidently E1(s) > E0(s) just when s < 3/4 so ... if s < 3/4 use F0(s) to compute c^2 , else use F1(s).
- If $\sqrt{3}/2 < s < \sqrt{(7/8)}$: $3/4 < s^2 < 7/8$ and $1/8 < c^2 < \frac{7}{4}$. In E0, $\delta s^2 = \frac{7}{4} \in$ and $\delta c^2 = 0$ so E0(s) = $\frac{7}{4}$. In E1, $\delta s = 0$ and $\delta c^2 = \frac{7}{16}$ so E1(s) $\approx \frac{7}{4}(1-s) + \frac{1}{16}$. Evidently E1(s) < E0(s), so use F1(s) to compute c^2 .