1

09/27/1994 07:15

Filename: CTRLE7Z.DOC Page

2

09/2771994 07:15

DOCUMENTATION for - CTRL87

CTRL87.DOC: WORK IN PROGRESS!

Prof. W. Kahan
Elect. Eng. & Computer Science Dept.
University of California
Berkeley CA 94720
Sept.. 27, 1994

The program CTRLS7.EXE, run under MS-DOS 2.3 or later, affects the
execution of floating-point arithmetic¢ by Intel numeric (co)processors
{ ix87s) in IBM- PCs and their clones, including in particular ...
Intel iB087 coprocessors used with 18086/88 and clones,
Intel and AMD 287 coprocessors used with 286,
Intel i387 and Cyrix 83D87 coprocessors used with any 386,
Intel i486DX, and 31487 with 14863X, and Cyrix c<lones,
Intel Pentium ({ 1586). i
CTRL87 exposes ix87 capabilities unexploited by most PC software.

The invocation * ctrl87 c¢tl msk *, with suitable 3-hex-digit words
in place of * ¢tl = and * msk ¥, sets as many as nine bits in the
(colprocessor Contrel-Word, thereby controlling subseguent floating-
poink operations’ .- ’ - :
Trapping upon Exceptions like oOverflow, Division by Zere, ...,
rounding to one of three selected Precisions, and
in one of four selected Directicns.
The possibilities are summarized in the following lines, which show up
after invocations " ctrl87 ? * or " ctrl87 " with blank parameters:

o A e e e e T - M e — — m S S S s s — = T e T e +
] .CTRLB7 =ctl<, msk»»> sets the ix87 Contrel-Word |
| C-W := {msk AND ctl) OR (NOT(msk}! AND C-W) from 2 i
| 3-hex-digit parameters ctl and msk . C-W's bits |
I are OR'd to affect floating-point thus: c-¥ . |
| TRAPS: {default} Disable All traps ... _3D |
| or Disable trap foxr INVALID OP - ... _01 |
| and Disable trap for DIV by ZERC .. 04 !
1 and Disable trap for OVERFLOW ... ke H
1 and ~ Disable trap for UNDERFLOW D.e 10 i
| and Disable trap for = INEXACT .. _20 o
| PRECISION: (default) Round to REAL*10 ... 3__ |
I : or else Round to REAL*S e 2 |
| or else Round to REAL*4 e O

| DIRECTICN: (default) Round to HNearest ... 0 |
| or else Round Down RO |
| or else Round Up 8__ |
| or else Round to Zerc ce. C_ |
i Initial Centrel-Word c¢tl set by FINIT ... 33D |
] Default msk = OF00 Maximzl effective msk = F3D I
| Current setting of Control-Word ctl L. Oxxx |
| Enter 3 hex digits for new ctl |
B m e o o e e e R e e e m e mm - M= s +

_After this display. pressing [Enter] does nothing but guit CTRLE7
Entering a 3-hex-digit c¢tl instead causes another prompt to show up:
. * Enter -3 hex digits for msk or accept OFD0 @ ~
After this prompt. pressing [Enter] assigns msk :z OF00 and does
what invoking * CTRL&7 ctl " in the first place would have done;
otherwise entering a 3-hex-digit msk does what * CTRLS7 .ctl msk *
would have done. Thess effects are explained at great length below.

Filename: CTRL87.DOC Page

The effects displayed ahove and to be explained below are mandated for
floating-point arithmetics that conform fully with IEEE Standard 754

for Floating-Point Arithmetic, though few compilers suppork them; and
different chips (e.g., Motorola’s 68881/2 and 68040) get those
effects from different bit-patterns. IEEE 754 is not standard encugh!

* ¥ ok ok ok ok x k & k F K *F ¥ % k Kk ¥ & Kk ¥ &

When- CTRLB7 may be used.
Program CTRLS7.EXE works by setting nine of the bits in a sixteen-bit
Control-word on Intel ix86/%87 chips. That must be done after the
Control-Word has been initialized (by a FINIT instruction egc.)
and before executing the fleating-peint operations to be controlled.
This timing is awkward because. those operations are performed in some
other software from which CIRLS7.EXE must be invoked, sometines via
another copy of COMMAND.COM -, if that other software allows such

invocations. They are allowed by some software, for instance ...
MAPLE V release 2 invocation: [F4] ctrld7 Exit
MATHEMATICA 2.2 . invocation: toerrls? ...,
MATLAB 3.5 invocation: 1 etrld? ...

Each such invocation of CTRLS7.EXE could be countermanded by software
that immediately afterward put a saved copy of the previous Contrel-
Word back, but I have yet to find an instance of that under MS-DOS.

You can get the same effect as " ctrl87 otl msk * from 16-bit words
Octl and Omsk within your own programs by coding in ...

*¥x A86 Assembly Language ***
FSTCW temp H
MoV AX, Omsk
AND AX, OF3D

++%% Microsoft or Borland C - *¥*¥

#include <flecat.h>

FWAIT ctrl = Oxlctl ;

OR temp, AX mask = 0x0msk ;

NOT AX . temp = mask & O0xOF3D ;

OR A¥, Octl temp = _control87{ctrl, temp) :

AND temp, AX

/* temp is new Conkrol-Word */
FLDCW*® temp .

* % %k k k 4k k kK k¥ k * ¥ * ¥ Kk * ¥ * %

What * ctrl87 ctl msk™ does.
The hexadecimal words ctl and msk are used to (relset any of up to
5 bits in the 16-bit Control-Word that determines the nature of ...

Trapping wupen Exceptions like Overflow, Division by Zere, ...,

Rounding to one of three Precisions, in one of four Directions,
for all subseguent floating-point arithmetic operations. These opticns
will be expiained in detail below under the headings Exception: ...,
rracisions,. .and@ Directions. The remaining 7 bits in the Control-
Word are best left alone provided they have been initialized correctly
{ one way for the i8087, another for the i387, etc.) To leave them
alone, CTRL87 replaces msk by (msk AND OF3D) internally.

Through an accident of language we say * and " to describe effects
achieved by a logical O©OR of bits for the Control-Word ; e.g., Lo
Hisable Ctrapping on INEXACT (0020) and UNDERFLOW { 0010).
and leave other exceptions' traps unchanged, and

Round to Double-Precision { 0200)} and Towards Zero (0CCO)
we use logical OR's to form corresponding hexadecimal words
ctl := 0020 + 00C1C + 0200 + 0C0O0 = OE30 and
msk = 002G + 0010 + 0300 + 0CO0 = OQF30 ,

and invoke ctrl87 O0E30 OF30 " to get the effect desired.

059/27/199%94 07:35

Filename: CTRLB7.DOC Page

3

. 09/27/1994 07:15

Filename: CTRLST.DOC - Page

4

Exceptions in General. * * * % % ¥ & % % % % ¥ * * & * * £ F ¥ ¥ * * ¥

Designers of operating systems tend to incorporate all trap-handling
into their handiwork, ~thereby burdening floating-point exception-
handling with unnecessary and intolerable overheads. Better designs
should incorporate all ficating-point trap-handling inte a run-time
math. library., along with logarithms and cosines, which the operating
system merely loads. To this end, the operating system has only to
provide default handlers ({ in case the loaded library neglects trap-
handling) and secure trap re-vectoring functions for libraries that
take up that duty and later, -at the end of a task, relinguish it.

Exceptions in General on the Qx87. * * % * * & & & & & & & * & « % &

To Disable an exception’s trap is to let the numeric (co)processor
respond ko every instance of that exception by raising its Flag and
delivering the result specified as its = Default * by "IEEE 754. For
example, the default result for 3.0/0.0 . is Infinity with the same
sign as that 0.0 The raised flag stays raised until later set down
by the program, presumably after it has been sensed. The ix87 family
keep their flags in a Status Register whose sensing and clearing fall
outside the scope of this documentation; see manuals for your chip and
for the programming environment (e.g. compiler) that concerns you.

| CAUTION: Do not change (erable or disable) exception traps
| in a way contrary to what is expected by your programming
| environment or application program, . lest unpredictable

! conseguences ensue. The default value OF00 provided fer
1 msk when CTRL87 is invoked simply via “ cbrl87 <tl *
I

prevents such a change from occurring inadvertently.

The ix87 Control-Word has a bit for each of the five exceptions that
IEEE 754 recognizes. Setting that bit to 1 disables the exception’s
trap;. 0 enables. BAn explanation for every exception follows.

* k % k k ok K k k % ¥ *k ¥ *F * Kk ¥ * *

Exception: 1ix87 STACK-BLUNDER.
An excessive obeisance to - Compatibility has propagated a design flaw
in Intel's - 8087 to later 80287, 387, 486 and Pentium floating-

. point arithmetics. OQur blunder practically prohibits extensjofx-into
memory of the ix87's on-chip eight-register floating-peint " Stack,”
which was originally intended to obviate any need to save and restore
ix87 registers between calls-to and returns-from function subprograms.
.

Ideally, a function’s [loating-point arguments (passed by value)
were to be pushed onto that stack, consumed, and replaced by the
function’s return-value(s) without regard for whatever was already on
the stack. Actually, pushing a ninth item onto the stack’s top causes
v gtack-Overflow * that would force the first item out the bottom to
be conveyed onto an extension of the stack in memory. Later that item
would bhe conveyed back onto the chip when a * Stack-Underflow * were
triggered by a reference to 4 now empty stack-register. But, because
of our blunder, no simples nor fast way will ever exist to convey items
from stack-bottom to memory and back, and consequently no generally
usable and fast extension of the stack into memory will ever exist.

Software to extend the floating-point stack into memory should have
haen written and tested, but wasn’t, before the 8087's design was
frozen. By the time this blunder was appreciated, it was too late to
add the eight more tag bits and two special load and store instructions
that would have banished the threat of Stack-Over/Underflow from the
concerns of early compiler writers and applications programmers. HNow
the FXCH (exchange registers) instruction has come to be used in
ways that almost preclude ever going back to the original intention.

To compound our blunder, Stack-Cver/Underfiow was mixed up with the
INVALID arithmetic operations to be discussed below. Both exceptions
are enabled/disabled by the same bit in the Control-Word and signaled
by the same flag bit in the Status-Word of the ix87, although they
can be distinguished with the aid of a Stack-Fault flag added to the
i387 and later chips. That mix-up necessitates the following ...

e R e e e e e e e s e T R e M A M S m S m e +
WARNING: Do not disable the INVALID exception, by inveking
* ctrl87 ctl msk " with odd integers ctl and msk , if
There are
compilers that do not preclude that possibility.

occur with the trap disabled, a result indistinguishable
from a data-dependent INVALID arithmetic operation could

I
i
i floating-point Stack-Over/Underflow is possible.
I
|
|
| seriously confuse subsequent attempts to debug the program.

|

|

|

should it |
T

|

|

stack-Over/Underflow must be avoided. . That can.be arranged by using

the stack exclusively for evaliating expressions that are not teo long.
Fortunately, caches are fast enough nowadays that saving intermediate
results in memory and reload1ng them to registers is barely tolerable.

Exception: INVALID operation. * ¥ * % % & % % % & & & & % ¥ * % * ¥

Signalad whenever an operation’s operands lie outside its domain, this
exception’s default, delivered only because any other real or infinite
vatue would most likely cause worse confusion, is NaN , which means
* fiot a Number *. -NaN alsc means * Not All Numbers* ; NaN does not
represent the set of all rsal numbers, which is an interval for which
interval Arithmetic provides the appropriate representation.

NaN must not be confused with " Undefined ". On the contrary, IEEE
754 @efines HNaN perfectly well even though most language standards
ignore and many compilers deviate from that definition. . The deviations
usually afflict relaticnal expressicns, discussed below. Arithmetic
operations upon NaNs other than SNaNs (see below) never signal
INVALID, and always produce NaN unless replacing every MaN operand
by any finite or infinite real values would produce the same finite or
infinite result independent of the replacements. For example, 0*NaN
must be MNaN because O0*Infinity 1is an INVALID operation { NaN).
On the other hand, .for hypot (X, ¥y} := sgrt(x*x + y*y) we deduce that
nypot (Infinity, NaN) = +Infinity since hypot(Infinity, y) = +Infinity
for all real 'y , finite or not; naive implementations of hypot may
do differently. :

Some familiar functions have vet to be defined for NaN For instance
max{x, y} should deliver the same resuit as max{y, x} but almest noc
implenentations do that when x is NaN ; there are good reasons to
define max{NaN, 5} := max{5, NaN} := 5 but manvy people disagree.

0972773994

07:15

Filename: CTRL87.DOC Page

5

06/27/1994 07:15

[

iEEE 75%4's specification for NaN endows it with a field of bits into
which software can record, say, how and/or where the NaN came inte
existence. That information would be extremely helpful for subsequent
" Retrospective Diagnosis * of malfunctioning computations, but no
software exists now to employ it. The ix87 copies that field from an
operand HNaN to the result NaN of an arithmetic operation, or fills
that field with binary 1000...000 when a new NaN is created by an
untrapped INVALID operation. (Other chips may behave differently.)
The ix87 treats a NaN with any nonzero binary 0xxx...xxx in that
field as an SNaN { Signaling NaN) in accordance with a requirement
of IEEE 754. An SNaN may be moved { copied } without incident,
but any arithmetic operation upon an SNaN is an INVALID operation
that must trap or else produce a new nonsignaling NaN. (Ancther way
te¢ turh an SMalN into a NaN is to turn Oxxx...X¥X into Ixxx...xxx
with a logical OR.) Intended for, among other things. data missing
from sktatistical collections, and for uninitialized variables, SNaNs
seem preferable for such purposes Lo zeros or haphazard traces left in
memory by a previous program. No more will be said about SNaNs here.

IEEE 754 defines all relational expressions involving . NaN toeo. In
the svntax of € , the predicate. x !='y is True but all others,
X<y, X<z=Vy, X==y, xXx>¥ and x »y , are False whenever
¥ or y or both are NaN, and then all but x !=y and x ==y are
invalid operaticons too and must signal INVALID. Ideally, expressions
X !l<y, Xx'e=y , X !>y and x !>y should be valid predicates,
guietly True whénever x or y or both are NaN , but arbiters of
caste and fashion for ANSI Standard C have refused te recognize: those

expressions. In any event, 1{x < y) differs from x >=y when NaN
is involved, though rude compilers " optimize * . the difference away.
Worse, some compilers mishangle NaNs in all relational expressions.

IEEE 754 recognizes seven invalid arithmetic operations, all NaN :
real SQRT(Negative) , 0.0/0.0 , Infinity/Infinity,. O*Infinity
infinity - Infinity , Anything REM 0.0, Infinity REM Anything

Certain conversions between floatingkpoint and other formats are also

invalid. However Infinity + Iafinity = Infinity is valid if signs
are all the same. Some language standards conflict with IEEE 754;
for example, APL expects 0.0/0.0 to deliver 1.0 . Scmetimes naive

compile-time optimizations replace x/x by 1 { wrong if x . is zero,

Trfinity or NaN } and x - x by 0 (wrong if x is Infinity or
MaN } and 0*x and 0/%x by O [wrong if ...), alas.
Ideally, certain other real expressions should behave the same as the

invalid operations recognized by IEEE 754 ; some examples in Fortran
syntax are ...
{Negative)**{Noninteger) . LOG{Negative) . ASIN{Bigger than 1) ,

SIN{Infinity) ., ACOSH(Less than 1) , ..., all of them NaN
Those expressicns do bebave that way . if implemented well in software
that expleits the transcendental functions built into the ix87 ;- to
this end, 1387 and successors are easier to use than 8087 and 80287.

A number of real expressions are sometimes implemented as INVALID by
mistake, or declared Undefined by ill-considered language standards;
a few examples are ...

0.0**0.0 = Infinity**0.0 = NaN**6.0 = 1.9 ,

COS({ 2.0*%120) = -0.9258790228548378673038617641...
More examples like these will be offered under DIVIDE by ZERO bhelow.

Filename: CTRLAY.DOC Page

Differences of opinion persist about whether certain fumctions should
be INVALID or defined by convention at internal discontinuities: a
few examples are ...

1.0**Infinity = (-1.0)**Infinity = 1.0 ¢ { NaNk is better.!}
ATAN2 (0.0, 0.0} = 0.0 or +Pi or -Pi ? { NaN is worse.}
ATANZ (+Infinity, +Infinity) = Pi/é ? { NaN is worse.)
SIGNUM(0.0} = 0.0, or +1.0 or -1.0 =7 { 0.0 is best.)

{ but CopySign(i.0, +0.0) := +1.0 and CopySign(:.0, ~0.0) := -1.0 .}

Between 1964 and 1970 the U.S. National Bureau of Standards changed
its definition of arccot(x) from 7Pi/2 - arctan(x} to arctan{l/x) .,
thereby introducing a jump at x = 0 . This change appears to be a bad
idea, but it is hard te argue with an arm of the U.S. government.

Scme programmers think invoking - ctri87.0 1 ", which enables the
trap to abort upon INVALID operations, is a safe way to avoid such
disputes; they are mistaken. Doing so may abort searches prematurely.
For example, try to find a positive root x o¢f an equation like

{ TAN(x} - ASIN{x) }/x**4 = 0.0
by using Newton’s iteration or the Secant iteration starting from
varicus first guesses between ©.1 and 0.9 . In general, a rooft-
finder that does not know the boundary of an equationfs domain must be
doomed to abork, - if it tests a wild guess thrown outside that domain,
unless it can respond to NaN by retracting the wild guess back toward
a previous guess inside the domain. Such a root-finder is built intoc
current Hewlett-Packard calculators that solve eguations like the one
above far more easily than root-finders on most PC's and workstatons.

(Attempts to cope decently with zll INVALID operations must run into
unresolvable dilemmas sooner or later unless the computing environment

provides what I call * Retrogpective Diagnostics ". These exist in a

rudimentary form in Sun Microsystems’ operating system on SPARCs.}

* k% Kk F * *F kX K kK Kk x ok ok ok & * & *k * *

A better name

Exception: DIVIDE by ZERO.
This is a misnomer perpetrated for historical reasons.
for this exception is))
* Infinite result obtained Exactly from Finite cperands. *

An example is 3.0/0G.0 , for which IEEE 754 specifies an Infinity
as the default result. The sign bit of that result .is, as usual for
quotients, - the exclusive OR of the operands’ sign bits. Since 0.0
can have either sign., . so can Infinity; - in fact, &ivision by zero is
the only algebraic operation that reveals the sign of zerc. |(IEEE 754
recommends a non-algebraic function CopySign to reveal a sign without
ever signaling an exception, but few compilers offer it, alas.)

Ideally, certain other real expressions should be treated just the way
IEEE 754 tyeats divisions by zero, rather than all be misclassified
as errors or * Undefined "; some examples in Fortran syntax are

0.0** (Negat iveNonInteger) = +Infinity LOG(0.01 = -Infinity
0.0**(NegativeEvenInteger) = +Infinity ATANH(-1.0) = -Infinity
ATANH(+1.0) = +Infinity {=0.0)** (Negat iveOddInteger) = -Infinity

The sign of Iafinity may be accidental in some cases; for instance,
if TANdeg(x) delivers the TAN of an angle x measured in degrees,
then TANGeg(9$0.0 + i80*Integer) 1is infinite with a sign that depends
upon details of the implementation. Perhaps that sign might best match
the sign of the argument, but mo such convention exists yet. (For x
in radians, accurately implemented TAN{x) need never be infinite !)}

05/27/1994 07:15

Filename: CTRLB7.DOC . Page

7

09/27/1594 07:15

Filename: CTRLST7.DOC Page

Operations that produce an infinite result from ar infinite operand or
two must not signal DIVIDE by ZERO. .Examples include Infinity + 3,
Infinity*Infinity ., EXP(+iInfinity) , LOG(+Infinity) , HNeither
should 3.0/Infinity = EXP{-Infinity) = 0.0 , ATAN{+Infinity} = Pi/2 ,
and similar examples be regarded as excepticnal. If all goes well,
infinite intermediate results will turn quietly into correct finite
final results that way. If all does not ¢go¢ well, Infinity will turn
into NaN and signal INVALID. Unlike integer division by zero, for
which no integer infinity nor NaN has been provided, floating-point
division by zero poses no danger provided subsequent INVALID
operations, if any, are not ignored:; . in that case disabling the trap
for DIVIDE by ZERO by invoking " ctrl8? 4 4 * is guite safe.

EXCEption: OVERFLOW. **t_ttt****_****i***.*.*'k.i’**
This happens after an attempt to compute a finite result that would lie
beyond the finite range of the fleoating-point format for which it is
destined. The default specified in IEEE 754 is to approximate that
result by an appropriately signed Infinity. Since it is approximate,
OVERFLOW ig alse INEXACT. Often that approximation is worthless; it
is almost always worthless in matrix computatiens, and soon turns inteo
NaN or, worse, misleading numbers. Consequently OVERFLOW is. often
trapped to abort seemingly futile computdtion sconer rather than later.

Actually, OVERFLOW mrore often implies that a different computational
path should be chosen than that ne path leads to the desired goal. For
example, if the expressicn X/SQRT(X*X + y*y) encounters. OVERFLOW
before the SQRT. can .-be computed, it should be replaced by something
like [s*x) /SQRT({s*x}*{s*x} + (s8*y)*{s*y) .) with a suitably chosen
tiny positive Scale-Factor s . The cost of computing and applying s
beforehand could be reckoned as the pricé paid for insurance against
OVERFLOW. 1Is that price too high? '

The biggest finite IEEE 754 Double is almost 9.0 307 , whichk is so
huge that OVERFLOW occurs extremely rarely if not yet rarely encugh
to ignore. -The cost of defensive tests, branches and scaling to avert
-OVERFLOW seems too high.a price to pay for insurance against an event
that hardly ever happens. A lessened average cost will be incurred in
most situabions by first running without defensive scaling but with a
judiciously placed test for OVERFLOW { and for severe UNDERFLOW);
in the example above the test should just precede the SQRT. Only when
necessary need scaling be institured. Thus our treatment of “OVERFLOW
has come down to this guestion: how best can OVERFLOW be detected?

The ideal test for OVERFLOW tests its flag; but that flag cannot be
menticned in most programming languages for lack of a name. Next best
ars tests for Infinities and NaNs conseguent upon. OQVERFLOW, hut
prevailing programming languages lack names for them; suitable tests

have to be contrived. For example, - the € predicate (z i= z) is
True only when 2z is NaN and the compiler has not " optimized *
overzealously: ((1.¢ e371/{1 + fabs(z}} == 0.0} is True only when

z is infinite; and ({z-z !'= 0.0} is True only when = is HNaN or

infinite, the INVALID trap has been disabled, and optimization is
not overzealous.

A third way to detect OVERFLOW 1is to enable jits trap and attach a
handier to it. Even if a programming language in use provides control
structures for this purpose, this approach is beset by hazards. The
worst is the possibility that the handler may be entered inadvertently
from unanticipated places. Ancther hazard arises from the concurrent
execution of integer and floating-point operations; by the time an
OVERFLOW has been detected, data associated with it may have become
iraccessible because of changes in pointers and indices. Therefore
this approach works only when a copy of the data has been saved to be
reprocessed by a different method than the one thwarted by OVERFLOW,
anid when the scope of the handler has been properly localized; note
that the handler must:be detached before and reattached after functions
that handle their own OVERFLOWs .are executed. The two costs, of
saving and scoping, must be paid all the time even though OVERFLOW
rarely occurs. ‘For these reasons and more, other appreoaches to the
CVERFLOW problem are to be preferred, but a more extensive discussion
of them lies beyond the intended scope of this document.

When OVERFLQW'S trap is enabled, the TIEEE 754 - default TInfinity

is not generated; instead. the results’s exponent is * wrapped,"
which means -in this case that the delivered result has an exponent too
small by an amount that depends upon its format:

REAL*10 in stack ... btoo small by 24576 ;. 27245746 = 1.3 E 73%8
{ REAL*8 in memory teo small by 1536 ; 271536 = 2.4 E 462)
{ - REAL*4 in memory ... too small by . 192 ; 27192.= 6.3 E 57)
{

The latter two, though reguired by . IEEE 754, cannot be performed)
{ by the ix87 without help from suitable trap-handling software.)
In effect, the delivered result has been divided hy a power of 2 50
huge as to turn what would have overfliowed into a relatively small but
predictable guantity that a trap-handier can reinterpret. If there is
ne trap handler., <computation will proceed with that smaller quantity
or, in the case of FS$Tore instructions, - without storing anything.
The reason for exponent wrapping is explained after TUNDERFLOW.

* Ctrl@7 © 8 * cnables, * ctrl 8 8 * disables the OVERFLOW trap;
they are not to be invoked lightly. . . .

Exception: UNDERFLOW. * 0k k %k * kK K Kk *k Kk k% %k & k k k k *k & ok * * k &
This happens after an attempt Lo approximate a nonzero result that lies
closer to zero than the intended floating-point destinatjon’s *Normal®
positive number nearest zero. 2.2 @-308 is that number for IEEE 754
Double. A nonzero Double result tinier than that must by default be
approximated by a nearest Subnormal number, whose magnitude can run
from 2.2 -308 down to 4.9 e-324 (but with diminishing precision),
or else by 0.0 when no Subnormal is nearer. IEEE 754 Single and
Extended formats have different UNDERFLOW thresholds, for which see
the Appendix: Represantable Floating-Point Numbers. . '

Subnormal numbers,. also called " Denormalized,® allow UNDERFLOW to
cecocur Gradually; this means that gaps between adjacent fleating-point
numbers do not widen suddenly as zero is passed. That is why Gradual
UNDERFLOW incurs errors no worse in absolute magnitude than rounding
errors among WNormal numbers. ©No such property is enjoyed by older
schemes that., lacking Subnormals, £flush UNDERFLOW Gto zero abruptly
and suffer consequently from anomalies more fundamental than afflict
Gradual UNDERFLOW.

3

09/27/1994 07:15 Filename: CTRL87.DOC Page)] 09/27/155%4 07:15 Filename: CTRLAT,DOC Page 10
For example, the C predicates x ==y -and ¥-y == are identieal- L. Digression en Gradual Underflow -

in the absence of OVERFLOW only if UNDERFLOW is Gradual. That is
so because x-y cannot UNDERFLOW Gradually; if x-y 1is Subnormal
then it is Exact. Without Subnormal numbers, x/y might be 0.95
and yet x-y could UNDERFLOW abruptly to 0.0 , as could happen for
x and ¥ tinier than 20 timés the tiniest nonzero Normal number.

Though afflicted by fewer anomalies. Gradual UNDERFLCW
them. For instance, it is possible to have x/y = 0.85 coexist with
(x*z)/{y*z) = 0.5 because x*z ‘and probably also y*z UNDERFLOWed
te Subnormal numbers; without Subnormals the last qguotient turns
into either an ephemeral 0.0 or a persistent NaN (INVALID 0/G).
Thus, UNDERFLOW cannot be ignored entirely whether Gradual . or not.

ig not free of

even if flushed to zero they rarely ﬁatter:
That harmful

UNDERFLOWs are uncommon;
if handled Gradually they cause harm extremely rarely.
remnant have to be treated much as OVERFLOWs are, with testing and
scaling, or trapping. etc.; however, the most common treatment is
to ignore them and attribute whatever harm that may cause to poor taste
in someone else’s ch01ce of initial data.

UNDERFLOWs resemble ants: where there is one there are qu1te llkely
many more, .ahd they tend to come one after another. That tendency has
no direct effect upon the 1387 and 'i486, - but it c¢an severely retard
computation on other implementations of IEEE 754 that have to trap to
software to UNDERFLOW Gradually for lack of hardware te do it. They
take extra time to Denormalize " after UNDERFLOW and/or, worse, Lo
prenormalize Subnormals before multiplication or division. Worse skill
is the threat of traps, whether they occur or not, Lo machines that
cannot enable traps without disabling concurrency and pipelining: - such
machines are slowed also by Gradual UNDERFLOWs thak do not occur!

Why should we care about such benighted machines? They pese dilemmas
for develeopers of applicatichs software deésigned to bs portable (after
recompilation} to those machines as well as ours. To avoid sometimes
severe performance degradation by Gradudl UNDERFLOW, developers will
sometimes resort to simplie-minded alternatives. The simplest violates
IEEE 754 by flushing every UNDERFLOW to 0.0 , and computers have
been sold that flush by default. [DEC ALPHA is a recent example; it
has been advertised as confeorming to I1EEE 754 without mention of how
slowly it runs with traps enabled for full conformance.) Applications
designed with flushing in mind may, -when run on i387s and i486és, ' have
to enable the UNDERFLOW trap and provide a handler that flushes to
zero, Ethereby running slower to get generally worse results! (This
is what MathCAD does on PCs and on Macintoshes.} Few applications
are designed with flushing in mind nowadays; since scme of them might
.malfunction if UNDERFLOW were made Gradual instead, disabling the
ix87 UNDERFLOW trap to speed them up is not always a good idea.

To put things in perspective, here is an example of a kind that, when
it appears in benchmarks, scares many people into choosing flush-to-
zero rather than Gradual UNDERFLOW. To simulate.the diffusion of heat
through a conducting plate with edges held at fixed temperatures. a
rectangular mesh is drawn.on the plate and temperatures are computed
only at mesh points. The firer the mesh. the more accurate is the
simulation. Time is discretized too; at each time-step, temperature
at every interior point is replaced by a positively weighted average of
that point‘s temperature and those of nearest neighbors. Simulation
is more accurate for smaller time-steps, which entail larger numbers
of time-steps and tinier weights on neighbors; typically these weights
are smaller than 1/8 , and time-steps number in the thousands.

when edge temperatures are mostly fixed-at 0 , and when interior
temperatures are mostly initialized to 0 , then at every time-step
those nonzero temperatures next to zeros get multiplied by tiny weights
as they diffuse to their neighbors. With fine meshes, large numbers
of time-steps can pass before nonzero temperatures have diffused almost
everywhere, and then tiny weights can get raised to large powers, so
UNDERFLOWs . are numerous. If UNDERFLOW is Gradual, denormalization
will produce numerous. subnormal humbers; they slow computation badly
on a computer designed to handle subnormals slowly because the designer
thought they would .be rare. Flushing UNDERFLOW to zero.does not slow
computation cn such a machine; zeros created that way may speed it up.

When this simulation figures in benchmarks that test computers’ speeds.
the temptation to turn slow Gradual UNDERFLOW Off and fast flush-to-
zero On is more than a marketcing manager can resist. Compiler vaendors
succumb to the same temptation; they make fiush-to-zero their default.
Such practices bring to mind the unfortunate accidents that occurred a

- century or so ago among high-pressure steam Beilers whose noisy over-

pressure relief valves had been tied down by attendants who wished to
sleép undisturbed.

} Vast numbers of UNDERFLOWs -usually signify that something aboub |
i a program or its data is strange if not wrong; this sigmal should |
| not be ignored, much less sguelched by flushing UNDERFLOW to O |

what is strange about the foregoing simulation is that exactly zero
temperatures occur rarely in MNature, mainly at the boundary between
colder ice and warmer water. . Initially increasing all temperatures by
some negligible amount, say 1.0E-30 , weuld not alter their physical
significance but it would eliminate practically all UNDERFLOWs and so
render their treatment, gradual or flush-to-zero, Iirrelevant.

To use such atypical zero data in a benchmark is justified only if it
iz intended to expose how long some hardware takes to handle UNDERFLOW
and subnormal numbers. Unlike many other floating-point engines, the
13187 and its successors are slowed very little by submormal numbers;
we should thank Intel‘s engineers for that and enjoy it rather than
resort to an inferior scheme which also runs slower on the 1ix87 .

End of Digression

09/27/19%94 07:15

Filename; CTRL87.DOC Page

11

08/27/19594

07:15 Filename:; CTRLST.DOC Page

When UNDERFLOW's trap is enabled, the
Underflow does not occur; the results's exponent is “ wrapped *
instead, which means in this case that the delivered result has an
exponent too big by an amount that depends upon its format:

IEEE 754 default Gradual

REAL*10 in stack ... Ltoo big by 24576 ; 2724576 = 1.3 E 73938
{ REAL*8 in memory ... too big by 1536 : 271536 = 2.4 E 462
{ REAL*4 in memory ... too big by 192 ; 27192 = 6.3 E 57

)
)
{ The latter two, though required by IEEE 754, cannot be performed)
{ by the ix87 without help from suitable trap-bandling software.)
In effect, the delivered result has been multiplied by a power of 2
s¢ huge as to turn what would have underflowed into a relatively big
but predictable guanrtity that a trap-handler can reinterpret. If there
is no trap handler, computation will proceed with that bigger quantity
or, 1in the case of FSTore instructions, without storing anything.

Exponent wrapping provides the fastest and most acourate way to compute
{al + bI)*{a2 + b2)*{a3 + b3}*(... }*(ak + bif)
Q = gy e et e ——————
: : {¢l + dly*{c2 + d2i*{c3 + 43¥y*{ ... 1¥{cH + dm}~

when N and M are huge and the numerator -and denominator are likely
to OVER/UNDERFLOW even though the value of ¢ would be unexcepticnal
if it could be computed. This situation arises in certain otherwise
attractive algorithms for calculating eigensystems,. or Hypergeometric
series, for example. What Q reqguires is an OVER/UNDERFLOW. trap-
handler that counts OVERFLOWs and UNDERFLOWs but leaves wrapped
exponents unchanged during each otherwise unaltered loop that -computes
separateély the numerator’s and dencminator’s -product of sums. - The
final quotient ¢f products will have the correct significant bits but
an exponent which, if wrong, <can be corrected by taking ceounts into
account. This is by far the most satisfactory way to compute © , but
for lack of suitable trap-handlers it is hardly ever exploited though
it was implemented on machines as diverse as the IBM 7094 and /360,
Burrcughs B5500, and DEC VAX.)

= Ctri87 0 10 * enables, " ctrl 10 10 * disables the UNDERFLOW
trap; - they are not te be invoked lightly.

* F k %k k % K k k % * k * * kK ¥ * k¥ + F ¥ ¥ F *k *

‘Exception: INEXACT. J
This is signaled whenever the ideal) result of an arithmetic operation
would not fit inte its intended destination, sc the result had to be
altered by rounding it off to fit. The INEXACT cCLrap is disabled and
its flag ignodred by almost all floating-point software. Arcane ways
exist to improve the accuracy of asome delicate approximate computations
by exploiving this signal, but they will not be discussed here. Only
exact integer computation will be considered.

Tha 1ix87 can handle integers up to 65 bits wide including sign,

and converts all narrower integers to this format on the fly. 1In
consequence, arlthmetic with wide integers may go faster in fleoating-
point thak in integer registers at most 32 bits wid=2. Even so; an
integer result can get too wide to fit exactly in floating-point, - and
then will be rounded off. If this rounding went unnoticed it could
lead te final results that were all unaccountably multiples of €4 for
lank of their last few bits. Instead, the INEXACT exception serves
in lieu of an INTEGER OVERFLOW signal; it can be trapped or flagged:
* CLrlg87 0 20 " enables, = ctrl 20 20 * disables INEXACT traps.

wWell implemented Binary-Decimal cenversion software signals INEXACT
just when it is deserved, just as rational operations and square root
do. However, transcendental functions like COS and X**Y may on
occasion deliver exact results and yet signal INEXACT undeservedly;
such a signal is very difficult to prevent.

precisiansofgounding': * % % % ¥ % % * * & ¥ * *k * ¥ *k k¥ k * * * * Kk
IEEE 754 obliges only machines that compute in the Extended (long
double ‘or REAL*10 } format to let programmers control the precision
of rounding from a control word. This permits the ix87 tc emulate
the roundoff characteristics of those machines that conform to IEEE
754 but support only Single (- C's float, or REAL*4) and Double
{ C’'s double, or REAL*2)} bub not Extended. Scftware developed
and. checked out on cne of those machinas can be recompiled for the

ix87 - and, if anomalies arouse. ¢oncerns about differences .in roundoff,
the software can. be run very nearly as if on its original host without
sacrificing speed on the ix87. Conversely. software developed on the
ix87 but without exlicit mention of Extended can be rerun in a way
that indicates what it will do on those other machines. Precision
control’ rounds to 24 sig. bits to emulate Single, to 53 Sig. bits
to emulate Double, - leaving zeros. in the rest of the 64 sig. bits of
the Extended format.

The emulation is imperfect.. Transcendental functiens are unlikely to
match. Binary-Decimal conversion software should ideally be unaffected
by rounding precision’s setting, but ideals are not always attained.
Some OVER/UNDERFLOWs that would occur on those other machines need
not occur on the 1ix87 ;. IEEE 754 allows this, perhaps unwisely, to
relieve hardware implementers of details that were thought unimportant.

sets precision to the default Extended REAL*10 .
sets precision to . Double Precision, REARL*S ,
- gels precision to Single Precision, REAL*4

* ¢ctrl87.300 300 -
* ctrl87 200 300 *
". ctrl8? 0 300 -

Directions of Rounding: * oW Kok K K K F K Kk F Xk x ok k¥ * E ox %
The default, xeset by - * ctrl87 0 €00 * , rounds every arithmetic
operation to the nearest value allowed by the assigned precision of
rounding. When that nearest value is ambiguous { because the exact
result would be one bit wider than the precision calls for) the
rounded result. is the * even * one with its last bit zerc. Nete that
rounding to the nearest 16-, 32- or 64-bit integer (FIST and
FISTP) 'in this way takes both 1.5 and 2.5 to 2, so the various
INT, IFIX, conversions to integer supported by diverse languages
may reguire something else. OCmne of my Fortran compilers makes the
following distinctions among roundings te nearest integers:

round to nearest even as FIST does.
round half-integers away from 0
truncate te integers towards 0

IRINT, - RINT, DRINT
NINT, ANINT, DNINT
INT, AINT, DINT
- CLyl8T7 COC €00 * causes subseguent arithmetic operations to be
truncated, rather than rounded, to the nearest value in the directien
of 0.0 In this mode, FIST provides INT etc. This mode also
resembles the way many old machines, now long gone, used to round.

12

0972771994 07:15 Filename: CTRL87.DOC Page 13 09/27/1994 0Y:15 Filename: CTRL87.DOC Paqé 14

" Ctrla7 400 C00 " rounds subseguent operations towards -Infinity ; Appendix: Representable Floating«Point Numbers. ¥ ¥#dsxissxxkssrvssrts
"-Ctrl87 800 CO00 " rounds subseguent operations towards +Infinity .

These " Directed * roundings can be. used to implement Interval

The ix87 handles three types or ' Formats of floating-point numbers:

Arithmetic, which is a scheme that approximate every variable not by single (REAL*4)}, Double { REAL*8), and Extended (REAL*i0).
cone value of unknown reliability but by two that are guaranteed to Each format has representations for NaNs, +Infinity, -Infinity, and
straddle the ideal value. This scheme is not so popular in the #.S8.A. its own set of finite real numbers all of the simple form
as it is in parts of Europe, where some people distrust computers. : k+1-N

n * 2
Control-Word control of rounding modes aliows software mofules to be with two integers n (Significand)} and k { unbiased Exponent)

re-run in different rounding modes without recompilation. This cannot that run throughout two intervals determined from the format thus:

be done with some other computers, notably DEC ALPEA, that can set

two bits in every instruction to control rounding direction at compile- N N X K
time; that is a mistake. It is worsened by the designers’ decision to N significant bits: -2 <n < 2 . Exponent: 1 - 2 < k< 2
take rounding direction. from & Control-Word when the two bits are set
to what would otherwise have been one of the directed roundings: had +-- Format -------w-u--o | I i K --+
ALPHA obtained the round-to-nearest mode only from the Control-Word, | Single: 24 7
their mistake could have been transformed into an advantageous feature. | Double: 53 10
| Double-Extended: [¥:] 14
Al1l these rounding modes round to a value drawn from the set of values D e L e P T PSP PP +

representable with the precision selected by rounding precision control
as decribed earlier. The sets of representable values are spelled ocut
in the Appendix that fellows. The direction of rounding can also
affect = OVER/UNDERFLOW ; a positive guantity that would OVERFLOW to
+Infinity in the default mode will turn into the format’s biggest
finite floating-point number when rounded towards -Infinity. &and the

This conclse representation, unique to IEEE 754, 1is deceptively

simple. At first sight it appears potentially ambiguous because, 1if
n is even, dividing n by :2 (a right-shift) and then adding 1
to k makes nc difference. Whenever such an ambiguity could arise it
is resolved by minimizing the exponent k and thereby maximizing the

sxpression * X - X * delivers +0.0 for every finite X in all magnitude of n ; this is * Normalizatjon.*' .IEEE 754‘'s Normals are
rounding modes except for rounding directed towards -Infinity, for . distinguishable from the Subnormal (Dencormalized) numbers lacking
which -0.0 is delivered instead. These details are designed to make or suppressed in earlier computer arithmetics; Subnormals are nonzero

Interval Arithmetic work better. numbers with unncrmalized significand and minimal exponent:

Ideally, software that performs @Binary-Decimal conversion (both N-1 N-1 K

ways) should respect the reguested direction of rounding and the -2 < n =< 2 and k=2 -2 .

precision of the conversion's destination regardless of the Control-

Word‘s setting of rounding precision. Algorithms that do this have

been put into the public domain [Netlib) by David Gay of AT&T. Subnermal Nos. [--—— Normalized Numbers ----- - = s - - -

but apparently few compiler writers know about it.) | | |

’ 0“+-‘+"+—+—+-+—+-‘+-+—+"+“+"+“+-+—+——-'0'—“"""-'—+———+—-"+—--+—-"+—"‘+ ——————
T 1 i | |
0 K K K
2-2 3-2 4-2

Powars of 2 1 2 2 2

-+- Consecutive Positive Floating-Point Numbers -+-
AR R AR AR R RS AAL AR RS LAttt R RSl R Rl il il iRt At Esd Rt SRRl R

Since the Extended format is optional in implementations of IEEE
754, most others do not offer it; ‘it is available only on Intel’s
x86/x87 and Pentium, Intel’s 80960 KB, and Motorola’s 68040 and
sarlier 680x0 with 68881/2 coprecessor, and Motorola’s 88110

Most microprocessors that support floating-point on-chip, and all that
serve in prestigious workstations, support just the two REAL*4 and
REAL*8 fleoating-point formats. In some cases the registers are all 8§
bytes wide, and REAL*4. operands are converted on the fly to their
REAL*8 eguivalents when they are loaded into a register; in such
cases, immediately rounding to REAL*4 every REAL*S result of an
operatien upeon such converted operands produces the same result as if
the operation had been performed in the REAL*4 format all the way.

Filename: CTRL87.DOC

09/27/1994 07:15 Filename; CTRLS7.DOC Page 15 09/27/1994 07:15 Page 16
But Motorola 680x0-based Macintoshes and 1Intel ix86-based PCs with The foregoing encodings are all * Lexicographically Ordered," which
ix87-based [not Weitek’s 1167 or 3167) floating-point behave quite means that if two floating-peint numbers in the same format are ordared
differently; they perform all arithmetic operations in the Extended {-say x <y), then they are ordered the same way when their bits are
format, regardless of the operands’ widths in memory, and round to reinterpretad as Sign-Magnitude integers. Conseguently, processors do

whatever precision is called for by the setting of a control word.

Only the Extended format appears in an ix87’s eight stack-registers
50 all numbers loaded from memory in any other format, fleating-point
or integer or BCD, are converted on the fly inte Extended with no
change in value. All arithmetic operations enjoy the Extended range
and precisicen. Storing from a register into a narrower memory format
requires rounding on the fly, and may also incur OVER/UNDERFLOW; the
register’s value remains unchanged if not popped off the stack. ({ Some
compilers, based upcen misconstrued ambiguities in manuals or upon ill-
considerad * optimization,® sometimes wrongly reuse thabt register's
value in place of what was stored from it; the correct procedure is to
store and pop (FSTP } and then relecad { FLD]} reused values.)

The ix87 encodes its fleoating-point numbers in memory and registers
{ in ways first proposed by I1.B. Goldberg in. Comm. ACM (1967) 105-6)
by packing three fields with integers derived from the sign, exponent
and sigrificand of a number as follows. The leading bit is the sign
‘bit, 0. for + and 1 for - The next. K+1- bits hold a biased
exponent.. The last N or N-! bits hold the significand’s magnitude.

There are also three special cases necessitated by Infinities, NaNs
and Subnormal numbers. WNote that +0 and -0 are distingluishable
and follow special rules specified by J1EEE 754 even though floating-
point arithmetical comparison says they are equal;. there are: good
reasons to do this. The two zeros are distinguishable arithmetically
only by either division-by~zero, | producing appreopriately signed
infinities)} or by the CopySign function in IEEE 754 / 854.

To simplify our presentation, the sign bit is assumed below to be 0
so the significand a is nonnegative.

¥¥rxxxvx Encodings of n(2%*(k+1-N)} into Binary Fields Bk A

| Number Type K+1 bit Exponent Nth bit N-1 bits of Significand i
| oo e o - Bl oz - |
| NaNs binary 111...111 1 binary 1xxx...xxx !
| SNaNs : binary 111...111 1 nonzero binary Oxxd:. .xxx |
| Infinities: binary 111...111 1 0 ’ . i
I Normals: k - 1 + 2**K 1 nonpegative n - 2**(N-1)

| Subnormals: 0 Q, positive n <« 2**{N-1) |
| Zeros: 0 o] o] |
e R it +

IEEE Single and Deouble have no HNth bit in their significant digit
fields; it is =~ implicit." (The ix87‘s Extended has the explicit
Nth bit for historical reasons; .t allowed the 8087 to suppress the
normalization of subnormals advantageously for certain scalar products
in matrix computations, but this and other features of the 8087 were
later deemed too arcane to include in IEEE 754, and have atrophied.)

not need floating-point hardware to search, sort and window floating-
point arrays quickly. (However, some processors reverse byte-order!)

Finally. as an amenity,
floating-point format,

the following table exhibits the span of. each
and its precision in " significant decimals."

*XF**E Span and Precision of ix87 TFloating-Point Formabs w¥¥xx
o e e T e R +
| Format. Min. Subnormal Min. Normal Max. Finite sig. Dec, |
| Single: 1.4 E-45 1.2 £-38 3.4 E38 6 -9 !
| Double: 4.9 E-324 2.2 E-308 1.8 E308 15 - 17 !
| Extended: 3.6 E-4951 3.4 E-4932 1.2 E4932 18 - 21 |
B i e e e +
The entries in the table come from the following formulas:

Min. Positive Subnormal: 2F%(3 - 2F*K - N)

Min. Positive Normal: 2%F (2 - 2**K)

Max. Finite: {1 - 1/2%*N) * 2%k (2**Y)

Siy. Dec., at least: - floor((N-1}*Logid(2)) sig. dec.

at most: cail{ 1 + N*Logl0(2)) sig. dec.

.The precision is bracketed within a.range in order to characterize how
accurately. conversion between binary and decimal has to be implemented
to conform to - IEEE 754. For instance; " 6 - 9 " 8ig. Dec. for
Single -means that, in the absence of OVER/UNDERFLOW, ...

If a derimal string with.at most 6 sig. dec. 1is converted to
Single and then converted back to the same number of sig. dec.,
then the final string should match the original. Also,

Single Precision floating-point number is converted to a
decimal string with at least 9 sig. dec. and then converted
back te sSingle, then the final number must match the original.

If a

09/27/1994 07:15 Filename: CTRLS7.DOC Page 17 09/27/1994 07:15 Filepame: CTRLS7.DAC Page 18

****‘k‘k*'kﬂ'*i‘**********'k'k*i"t***‘l'*****'l'*'{“ir'l'*************’i‘****************&****

e E e o T T T v e = o Blbllography- **************t*****‘k***i‘*********t******i’*t***********
Appendix: How to set the Motoreola 68881/2 or 68040 Control Word TEEE standards 754 and 854 for Floating-Point Arithmetic. For a
~~~~~~~~~ on a 68Cx0-based Apple Macintosh readable account see the article by W. J. Cody et al. in the IEEE

, Magazine MICRO, Aug. 1984, pp. 84 - 100.

The idea is to use the * MacsBug * Debugger to alter 12 .bits in the “What every computer scientist should know about fleoating-peint
Floating-Point Control Register fper , thereby controlling precision, arithmetic® D. Goldberg, pp. 5-48 in ACM Comput ing Surveys vol. 23 #1
rounding direction, and trapping on floating-point exceptions. { The (1891). Aalso his “Computer Arithmetic,* appendix A in *Computer

Floating-Point Status Register fpsr can be read and set EGo. )

To trap out of any program and enter the debugger, press the

Programmer’s Interrupt button or, lacking that, press
[Command] [Power On/Off]
In the debugger, type
tf ... to display floating-peoint registers.
fpcr = SXXXX --- to enter hex digits XXXX into fper
fpsw = SYYYYYYYY ... o enter hex digits YYYYYYYY into fpsr.
tf --- to display floating-point registers.
g --. Lo resume executing the trapped program.
The bits in the fper have the following effects:
Enable traps, rather than deliver default resilts:
Branch/Set trap on unordered - = = - = - - - 5800
Trap to signal NaN operand - - - - - - - - - 5400
Trap on Invalid Operation - - - - - = - - - - 5200
Trap on Overflow - - - - - - - - - - . . _ _ _ 510_0
Trap or Underflow e -1 1 ¢
Trap on Divide-by-Zero - - - - - -~ - - - . _ _ $04_0
Trap oh Inexact Arithmetic - - - - - - - - - - 502 0
Trap on- Inexact Decimal-Binary Conversion - - 301_0
These may be combined by addition; e.g., to trap con
either Invalid Operation or Overflow, use £30_0 .
Set Frecision of Rounding [ choose just one ) :
Extended { REAL*1Q } R T S R ¢ 4
Double { REAL*8 } R - ¢$__s8o
Single { REAL*4 ) e R - 3¢ Y
Set  Direction of Rounding { choose just one ) :
To Nearast e - S ¢
. Toward Zero e - T %0
Toward -Infinity - - - - - « - - - - - - . _ - § 9p
Toward +Infinity - - - - - « - o - _ - _ . . 530

Precision and Direction may bé combined by addition.

i R L L e vy

Architecture: & Quantitative Approach* J.L. Hennessey and D.A.
Fatterson (1890), Morgan Kaufmann, San Mateo CA. Surveys the basics.

“Intel Pentium Family User’s Manual, Volume 3: Architecture and
Programming Manual®* (1994) Order no. 241430 Explains instruction
set, control word, flags; gives examples.

'Programming the 80386, featuring 80386/387" John H. Crawford &
Patrick P. Gelsinger (1987) Sybex, Alameda CA. Explains. instruction
set, control word, flags; gives examples.

"The 8087 Primer” John F. Palmer & . Stephen P. Morse (1984) Wiley
Press, New York NY. Mainly of historical interest now.

User’s Manuals for the Motorocla
MC 68881 and 68882 Floating-Peint Coprocessors
MC 68040 Microprocessor
PowerPC 601 Microprocessor

Explain instruction sets., control word,

MC68881UM/AD (1987)
MCE8040UM/AD {1989)
MPCEQ1UM/AD {1993)
flags, ... .

"Apple-Numerics Manual, Secoand Edition" (1988) Addison-Wesley,
Reading, Mass. Covers Apple IT and 680x0-based Macintosh floating-
point; it is a pity that nothing like this has been promulgated for
Intel ix87 floating-point.

"Branch Cuts for Complex Elementary Functions, or Much Ads About
Wothing s Sign Bit" W. Kahan: ch. 7 in *The State of the Art in
Numerical Analysis™ ed. by M. Powell and A. Iserles (1987) Oxford.
Explains how proper respect for -0 eases implementation of conformal
maps of slitted domains arising in studies of flows around obstacles.

“The Effects of Underflow on NMumerical Computation® J.W. Demmel, PR .
887-919 in SIAM J1. on Scientific & Statistical Computing vel. 5 #4
(Dec. 1%84).. Explains advantages of gradual underflow.

"Faster Numerical Algorithms via Exception Handling* J.W. Demmel and
¥. Li, pp. 983-992 in IEEE Tran. con Computers vol. 43 #8 (Aug. 1994).
Some computations can go rather faster if OVERFLOW is flagged than if
it will be trapped.

‘Database Relations with Null values®
Computer and System Sciences vol. 28 (1984).
NaN { he calls it *ni* for " no information * )
in a database.

C. Zaniolo, pp. 142-166 in JI.
Tells how best to treat a
when it turns up



09/27/1994 07:15 Filename: CTRL8T.POC

Page

19

09/57/1994 07:15 Filename: CTRLE7.DCC Page

{$R~,8$-,1~-,D-,T-,F-,V-,B-,N-,L+ }
{$M 1024,0,1024 }

program ctrl87: {
{ CTRL87 <ctl<, msk>»

Written in Borland’s Turbo-Pascal }
uses two 3-hex-digit parameters

to set as many as 9 bits in the ix87 Control-Word as follows:
New CW := (msk AND ¢tl)} OR (NOT(msk) AND Old CW) .
If msk is omitted, OFC0 is used in its place. If beth msk

and c¢tl are omitted, or if either is " 7
they will be prompted from the keyboard after the display of
DOC ~ below,
point arithmetic operations.

To do nothing, [Enter]

Te prevent mishaps, msk 1is filtered thus: msk :=

n =19 ; { n = current number of lines in DOC }

DOC: array[l..n] of string[55}% = (

" CTRL87 <ctl«, msk»» sets the ix87 Contrel-Word -,
' C-W := (msk AND ctl} OR (MOT(msk) AND C-W) from 2’,
' '3-hex-digit parameters c¢tl and msk . C-W''s bits -,
" are OR’’d ‘to affect floating-peint thus: c-w r,
' TRAPS: (default) Disable All traps ce. 3D 7,
4 or Disable trap for INVALID OP P )
' and Disable trap for DIV by ZERO R 7 S
4 - and Disable trap for OVERFLOW ' Se. 08 7,
4 and Disable' trap for UNDERFLOW .. 210 v,
" and Disable trap for INEXACT ... _20 7,
" PRECISION: (default) Round o REAL*10 ... 3__ ',
' or else Round to REAL*S e 201,
’ or else Round to REAL*4 .- 0_ 7,
* DIRECTION: (default) Round te WNearest ... 0__ ‘.,
4 or else Round Down P S
! . or else Round Up e B,
! or else Round to Zero T
"' Initial Control Word ct&l set by FINIT ... 33D *,
> Default msk = OFQ0 Maximal effective msk = F2D *
Scrl = ' Current setting of Control-Word ctl g
S3H = ' Enter 3 hex digits for * ;
mex = $0F3D ; { ... maximal msk }
var
ctl, i, j, k, L, msk : word ; s : string ;
function Wrd2str{ i : word ) string ;
{ ... converts word 1 to its string of 4 hex digits.}
var j, k : word ; s string(4] ;
N begin
s 1= "7
for ¥ = 0 to 3 do begin B B
i := i BND SF
i == i shr 4 ;
if § > 9 then 3§ := j + 537
else 3 := j + %30 ;
s := Concat{ Chr(3j)., s } :

end ; { k )
Wrd2str = $
and; { Wrd2str )

ctl and msk

which explains how they affect subseguent floating-
nothing.

msk AND OF3D

or not hewxadecimal

procedure GetHex{ var i, k : word; & : string ):
begin { converts string s to 4-hex-digit word 3J }
Val( ConCat{'$',s), 3, kK } ; { i = value of $s if k
if k > 0 then Writeln(s, ' is not hexadecimal.’}

o}

end ; { GetHex }
bagin
inline{ $9B/SD9/S3E/i/898 ) ¢+ { fstew i : old Control-Word }
:= ParamCount ;
if L =0 then k := 1 else begin
s := ParamStr(l) ; { = first parameter on DOS command line }

if Copyl(s,1, i} = *?

then k := 1 else GetHex{ctl, k, s} ;
if k = 0 then

if L < 2 then msk := $OF00
else GetHex({msk, k, ParamStr{2)) ;
end ; (L >0} :
while k =0 do beéin { Prompt for ctl and msk .}

for j :=.1 to n -
Writeln| Sctl, Wrd2str( i AND msx }

do Writeln( DOC[j] }
[

Writeln({ $3H, ‘new ctl :' ) :

Readlnis) . ’ .

if (8 = 7*') or (s ="' ‘) or (s = * '}
then Exit ; { Do nothing.}

if Copyi{s,1,1) = *?7 then k := else GetHex(ctl, k, s} ;
if k = ¢ then { Prompt for msk .}
repeat .
Writeln( S3H, ' msk or accept
Readln{s) ;

if (s ="*")or {s =~

OFQQ =’ ) ;

Yor (s=" *»
then msk := $0FQ0
) else GetHex{msk, k, s) ;
until k = 0 ; { Prompted for msk .}
L :=0 ;
end ; { Prompted values for

ctl and msk .}

msk := msk and msx ; { Don’'t change 8087 vs. 387 C-W .}
ctl := (msk and ctl) or {{not msk) and i) :
inline{ $9B/S$D9/S2E/ct1/$9B ) ; { fidcw ctl }
if L =0 then Writeln{ Sctl, Wrd2Stxr({ <tl AND msx ) } ;
end. )
(Cl W. Kahan 1994

20



