Elementary Functions from Kernels
W, Kahan  Oct. 24, 1983

Given binary floating-point subprograms to calculate the "Kernels"
In{x} Ffor x > 0 and 1nlp{x) = 1ln(i+x) Ffor x 2 -1,
exp(x) and expmi{x) = expix)=1 for all x , and
tani{x) Ffor ix]| < n/8 and arctani(x) for Ix| ¢ ¥v2 - 1

to nearly full working accuracy, we may calculate all the other

elementary transcendental functions almpst as accurately, and with
no violation of (weak) monotonicity, as follows. Rounding must

conform to IEEE 754 or pB54. We will need a threshold t

chosen about as large as possible subject to the constraint that

1 — 2 vround to 1 to working precisiony and and we shall use

2 .= Ixf and s = copysign{l,x}) = +1 . We also abbreviate

expmi to E and 1lnilp tao L .

L

sinh{x) (= x if z < t , else (provided E(z) doesn’ 't overflow)

= sk ( E(z) + E(z)/(1+E(z)) )/2 ... certainly monotonic.
tosh(x) (= 0.3%exp{z) + 0.25/(0;5*éxp(2)) . " ' " .
tanh(x) = x if z < t , else |

= -sKE{(-2%z}/(2 + E(-2%z)) .
asinh(x) = x if 2z <t , else, unless 2z overflows,

‘ =skl( z + z/C1/z + Y1+ (1/2)2)) ) ignoring underflow.

For slightly better accuracy when z > 4/3 , use
‘asinh(x) = skxln( 2z + 1/(z+ ¢(1+2=)) ) if =z < 1/t , else

= osx{ Infz) + 1n(2) ) .
acosh(x) = +L{ ¥ {x-1)¥ (¥ (x—1) + ¢¥(x+1)) )} unless 2x overflows.

For slightly better accuracy,

acosh (x) in(x) + In{2) if x > i/t ,  else

Ind 2x = 1/ + ¢¥(x=2-1)) }» if B/4 < x £ 1/t , else
L{ (x—1) + #{(2(x—1) + (x=1)=) )

I

x if z < £t , else

atanh(x) .
' skl (2%z/(1-2))/2 .

oo

s¥kn/2 — arctantl/x) if z >t , ar (monotonically)
. skri/4 + arctan( (x—-s)/({x+s) } if ¥2-1 < z < ¥2+1 .

arctanix)

Won

®x if z < t , else
arctan(x/¢y(1 - z=)) if t <z < 1/2 , else
arctan(x/¥(2(1-z)-(1-2)®)) ignoring divide~-by-zero.

arceinix)

nu i
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arccos(x) Zrarctan{y((1-x)/(1+x)) ) ignoring divide-~-by-zera.

For z < n/4 let Ti(x) = 2tan(x/2) ;‘ then
T(x) = tan(x) .= sin(x) = x and cos(x) =1 if z < t .
Otherwise compute = tan(x), sin(x) and cos(x} thus for z < n/2 :

tan(x) = if 2z < n/8 then T(2%x)/2
else if In/B8 < = then 2/ T(n—-2%z)

elcse ok (2 + T(2Xz-n/2)) /(2 ~ T(2%z-n/2)) .
(Check monotonicity as =z passes through n/8 and 3n/B .}



If n/4 ¢ 2z ¢ n/2 then the formulas sin(x) = skxcos(n/2-z)

cosi(x) = sinin/2-z) reduce the argument. x to vy satisfying
lyl < n/84 , wherein we compute T = T(y) , q = T2 , and then
sinly) = vy - y/(1+4/Q) j;

cosly) = if q < 4/15 then 1 - 2/(i+4/qQ)

else 3/4 + ((1-2%qg) + 4g/4)/(4+q) .

Monotonicity is preserved except possibly as x passes through

multiples of n/4 , where the accuracy of T(x) matters.

Some implementations of tan(x/2}) actually deliver two functions
Alx) and B(x) satisfying Ax)/B{x) = tani{x/2) For |Ix| < n/4
‘on which range |A(x}/Bix)] < ¥2 — 1 = 0.414.,.. . These can be
used to deliver sin, cos and tan more economically than above,
and monotonically too provided A(x)/B(x) 1is monotonic. For

t <z < n/4 let roi= Bx)/AMk)Y > ¥2 + 1 3 and then
sin(x) (= 2/{(r+1/r) and casi{x}) = 1 — 2/7{(1+r=
if both of sin{x) and cos(x) are wanted simultaneously,
economical pair of formulas is
gin(x) = 2/{(r+i1/r) and  cos(x) =1 - (1/r) sin(x) .
To ensure monotonicity as x passes through multiples of

check that computed sint(n/4) £ computed cos(n/4) ; else use a
better formula for cos <{(see above). Computing tanix) +for

Ixi € n/2 from @&KX) and B(x) is much like before:
tan(x) = if =z < n/8 then A(2%x)/B(2x)
elese if 3In/B < z then Blskn-2¥x}/Al(sikn-2%x)

else wX(B(y)+A(y)}I/(B(y)-Aly)) where vy .= 2%z-n/2
Monotonicity must be checked as =z passes through n/8 and 3n/8

Other topics to be added later:

y* ‘
atan2(y,x) = Argi{x + ry}) , especially with +0 and =+
cabs(x + 1yl = ¥{x=2 + y=)

other complex elementary functions

approximating tan(z) For © < z < n/B

arctant(z) +Ffor O < z < y2 - 1

Inlp(x) and in(x) and expml(x) and exp(x)
argument reduction '

Given A{x) and B(x) above, which is better:

r .= Bi{x)/A(x) and then campute 1{/r , ar

r = Bix)/8(x) 3§ {(1/r) = AX)/B(x) 3 ?

What is wrong with _
v = 26/{A=+B®) 3 sin(x) = vB 3 cos(x) =1 - vA 3 7?

-



Elementary Inegualities among Elementary Functions

W. Kahan Aug. 19, 1985
Programmers, like other people, frequently take familiar
properties of elementary functions for granted. I+ x <y , for

instance, they expect exp(x) £ exp(y) ;3 the possibility that
computed exp(x) > computed exp(y) might occur because of rounding
errors is unlikely to be considered until after it has caused a
disagreeable surprise. Such a violation of expected monotaonicity
is potentially more troublesome than an error of several ulps in
the computed value of exp(x) . Fortunately, library programs
that compute expi(x}) can easily be made monotonic even when, for
very large 1{x| , they cannot easily be kept accurate within an
ulp. For some other functions, like cos and log , the
preservation of monotonicity can challenge the implementor. And
if that challenge is overcome, inegualities among different but
related elementary functions can pose problems of a still higher
order of difficulty. How far is an implementor obliged to go to
protect inegualities among elementary functions fram roundoaff?

To appreciate better the limits upon an implementor’ s powers, let
us consider the following examples of elementary inequalities:

Lt x/(1+x) € lnip(x) i= ln(l+x) ¢ x for all x > -1 .
E: x < expmi(x) = expi(x) - 1 for all x ; and
EL: expml (x) ¢ ~-lnip(-x) £ x/(1-x) for all x < 1 .

The inequalities 1Inilpix) < x and x < expml(x) can be enforced
by keeping the errors in the implementations of 1nlip and expml
below one ulp when [x{ is tiny; this is not hard to do. But no
amount of care in the implementation of Inilp can enforce the
inequality x/(i+x) € Inlp(x) despite roundoff in x/{1+x) . For
instance take x = 0.00499 and perform arithmetic rounded to 3
significant decimals. Then i+x = 1.004%9% rpunds to [i+x1 =1 ,
and then x/[1+x1 rounds to x . But Inip{x) = 0.0049775912...
rounds to 0.00498 < x , violating the inequality in question. A

similar example dispaoses of expml(x) < x/(1-x) . The inequality
expml (x) £ ~inip(-x) is more subtle; now try x = 0.00000 99999
in a context where arithmetic is performed to 5 sig. dec. Since
expml (x) = 0.00000 9977 47999 16&67..
< 0,00000 99999 49999 3333.. = -Inipi-x) ,

an implementor could not round these to 0.00000 99972 , that is
to 5 sig. dec., without first knowing them to at least 10 sig.
dec., twlce as many. 1¥ each value were computed independently
in error by as much as +0.00000 00000 00001 , rounding them
subsequently to 95 sig. dec. could yield 0.00001 0000 faor
expml(x) and 0,00000 99992 for 1nipi{x) , viplating the
inequality in guestion. :

It seems extravagant to carry more than twice as many figures as
will be returned; and doing so would not by itseldf guarantee no
argument x exists for which far more precision than that is
needed to round well enough to preserve an ineguality. Another
unsatisfactory strategy for preserving inequalities is to use only
algorithms designed for the purpose; the strategy 1s unattractive
because the only such algorithms known at this time involve the
use of Taylor series to the exclusion of economized polynomials or
continued fractions or other more interesting schemes. Therefore
the thoughtful programmer must acquiesce to the nccasional
violation of some familiar inequalities by roundoff.

=z



What relations among elementary functions deserve to be taken for
granted? One of them, monoctonicity, is a subject too delicate
to be discussed here; my report on the subject appears elsewhere.
A second relation concerns “Cardinal Values" § these are exact
values taken by transcendental functions. A collection of them is
displayed in Table 1. A third relation concerns "Functional
Identities” 3 the best-known examples are the odd functions like
sin{—-x) = —-sini{x) , arctan(-x) = —arctani{x) , ... -and the even
ones like cos{-x) = cos({x) , ++» . Less well-known, perhaps
because they are wrongly taken for granted, are identities like

¥(x=) = x| , which is satisfied, for all floating-point numbers
x for which x=2 dpes not over/underflow, by correctly rounded
square and square rocot operations in binary and quaternary
floating—-point arithmetic. The identity fails for some x  when
the arithmetic’s radix exceeds 4 . . The complementary identity
(¥x)2 = x , on the other hand, cannot survive roundoff for all
positive x, regardless of radix or rounding correctness. The
most general discussion so far of Functional Identities was
published in Math. of Computation in 1971 by Harery Diamond.

A fourth relation among elementary functions includes inequalities
of the forms F(x) < Constant and fi(x) ¢ x or F{x) > x . Such
jnegualities can be preserved in implementations of +(x) by
keeping its error below one ulp, so they deserve to be taken for
granted. Table 2 contains a collection of inequalities involving
a representable Constant . Inequalities E and L above are
instances of inequalities involving x , and some more follow:

The following string of inequalities involves only odd functions
of x , and is therefore stated only for all sufficiently small
positive values of x . Reversing the sign of x reverses the
sense of all the inequalities in the string.

x cos ¥ < tanh x < arctan x < sin x < arcsinh x < x -
x < sinh x < arcsin x < tan x < arctanh x < x coash x .

Some of these inequalities remain valid as x increases from O
only so long as x remains below some threshold. The thresholds
are tabulated below: :

At x = 0.74461 14991 45... arctanh x = x cosh x .
At  x = 0.97743 48912/2... ,  tan x = x cash x .
At X = 0.999%0 60124 1267... arcsin = tan x .

Faor x > 1 remove arcsin x and arctanh x from the string.
At x = 1,55708 58155 ... . arctan x = gin x . '
For x > n/2 = 1.57079 463268 ... remove tan x .

At x = 1.87510 40687 ... ) tanh x = sin X .

At x = 4.49340 94579 ... . X COS X = sin x .

At X = 4,91716 45703 ... ’ ® COS X = tanh x .

At x = 4,99108B 47312 ... 2 X COS X = arctan x .
At X = 35.,18250 39692 ... ' X COS X = arcsinh x .

Much as we might wish that the whole string of ihequalities would
persist as long as x remains between O and whatever threshold
is pertinent, any of those inegualities demanding more than a
comparison with x can succumb to roundoff when x 1is tiny.



Table 1 3 EXACT CARDINAL VALUES

Pt T P P P i g P P

Positive zeros: 1n(l) = arccesh{l) = arccos(1) = exp(-p) =
= (10) Lavcan > 0 o (._',.m) (v mm € O = (tO} (honintegers > O =
= (4() ventntege- < © = (fraction)T™ = (+{(>1))™= = 40 ,
Signed zeros: sin(+0) = arcsin(+0) = sinh{(+0) = arcsinh(+0) =
= Inip(+0) = tan(+0) = arctan(+0) = tanh (+0) = arctanh(+0) =
c= expml (+#0) = Y (+0) = (+0) (med > O = (4g) wES < O = +0  resp.
Whether sin(nm), tan(nn) or cos({n+l/2)n) can vanish and, if

so, what sign to assign to © , depend upon how trigonometric
argument reduction is performed.

Ones: cos(0) = cosh(0) = tanh{+ = exp({0} = (anything)® = 0! =
= 1! = jFfinite o (y{)even = j . (-1y=ed = tanh(-) = ~1 ,
Whether cos(2nm) = sin((2n+1/2)m) = tan{{n+i/4)rn) = 1 exactly

depends upon-how trigonometric argument reduction is performed.

Integers: ¢ (n®) = 1logie(l0™) = n for all sufficiently small
nonnegative integers n 3 .mkkn = m™ is an integer too
if Im|{ 1is an integer.
Silent Infinities: sinh (+) = arcsinh(+0) = (+X) S99 = 4B resp.
cosh () = arccosh(+X) = ¥+ = Ini{+m = exp(+o) = (+(>1)) > =
= (+fg) (menintemges > Q) = (Im) Cuvarty > O) o= (-Frr‘actil:m)"* = +{0 .,
Signaled Infinities: arctanh(+1) = (+0) ¢=aa < & = +i resp.
_1n(0) = 0<w-ﬁ < Q) = Otnmimt-g-r- < O o= o4 .
Whether tan((nr+1/2)n) .is infinite and, if so, its sign depend

uptn how trigonometric argument reduction is performed. None the
less,  the identity tan(-x} = =tan(x) should still hold. '

Arg(x + ry) = ATANZ2(y,x) has values some of which are determined
by consistency with complex arithmetic; to describe these
apeciaf values we let « and @ stand for arbitrary real
variables subject only to the cénstraints O € w < O € +00

ATAN2 (+0, +0) = ATANZ(+0, +0) = ATANZ2 (+w, -+ +0 resp.;
ATANZ(+0, -0) BTANZ2(+0, —-0) = ATANZ (tw, -0 +n resp.
ATANZ (0, +) +n/4 resp. . ATANZ (0, ~Q) +3n/4 resp.;
ATANZ (0, +w) ATANZ (+(, —w) ATANZ (£2, O) = +n/2 resp.

n
N

Table 2: CONSTANT BOUNDS
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fsin] < 1 3 lcos! <1 3 J{tanh| £ 1 ( cosh ;3 O < expj 0L ¥ ;

[La

0 < arccosh 35 © < arccos < n j Jarcsin| < ®/2 3 tarctani n/2



