+ P HISTORY1 Work in Progress W. Kahan Jan. 13, 1992
‘F [This is intended for 2 forthrosing text on computer architecture by David A.-Patterson and John L. Hennessy
siged at college sophowores or juniors. It would be an appendiz to a chapter about computer arithmetic,

1] pot For. FuRTHER DISTRIBUTION f Aformen R Homeccy mos change Hiy |

A

4.11 Floating—Point: Historical Perspective and Further Reading

Arecham’'s Law ("Bad money drivesg out HGood”} for computers would
gay “The Fasgit drives ouit the Siow even If the Fast ie wrong”.
W. Kahan

At first it may be hard to imagine a subject much less interesting
than computer arithmetic carried out correctly, and harder again
to understand why a subject so old and mathematical should be so
controversial:. Computer arithmetic is as old as computing itself,
and some of the subject’s earliest notions, 1like the economical
re~use of registers during serial multiplication and division,
gtill command respect to-day. Maurice Wilkes [19851 recalled a
convergsation about that notion during his wisit to the United
States in 1948, Dbefore the earliest American stored program
machine had been built: '

ese & project under von Neumann was to be set up at the
Institute of Advanced Studies in Princeton Goldetine
explained to me the principle features of the design, including
the device whereby the digite of the nulliplier were put inte
the tail of the accumulator and shifited out as the least
significant part of the product wae shifted in. [expregsed
some admiration at the way registers and shifting eircuils were
arranged ... and Goldstine remarked that things of that naiture
came very easily to von Neumann.”

There is no controversy here; it can hardly arise in the context
of exact integer arithmetic so long as there is general agreement
on what integer the correct result should be. However, az soon

as approximate arithmetic enters the picture so does controversy,
as if one man’s negligible must be another’s everyihing.

The First Dispute . :
Floating-point arithmetic kindled disagreement before it was ever
built. John wvon Neumann refused to include it in the machine at
Princeton. In an influential report co-authored in 1948 with
H. H. Goldstine and A. W. Burks he explained his reasons thus:

“ Several of the digital computers being planned or buildt In this
country or Iin FKngland are to contain a se—called ‘'Floating
decimal point.' ... There appear o be iTwo major purposes Iin a
‘Floating' decimal point sysgiem both of which arise from the
fact that the number of digits In a word is constant, Ffixed by
design considerations for each particular machine. The first of
these purposes is 2o reiain in a sum or produci as many
gsignificant digits as possible and the second of these is 2o

- free the human operaitor From the burden of egtimating and
inserting into a problem ‘scale factors' =~ wultiplication
constants which serve 1o keep numbers within the limite of the
machine.” '

HISTORYL . Work in Progress W. Kahan Jan. 13, 1992

¥ There is, of course, no denying the fact that human time is
consumed In arranging for the Introduction of suitable scale
factore. He only argue that the #ime consumed is a very small
percentage of the total time we will spend in preparing an
interesting problem for our machine. The first advantage of ithe
floating point is, we feel, somewhat illusory. In order to
have such a floating point one must wacite memory capaciiy which
could otherwice be used for carrying more digits per word. It
would therofore seem to us not at all clear whether the modest
advantages of a floating binary point offset the loss of memory
capacity and the Increased complexity of the arithmetic and
control circults.”

The argument seems to be that most bits devoted to exponént fields
would be bits wasted. Experience proved otherwise. A programmer
had to choose scale factors to accommodate the largest magnitudes

he could not be sure his variables would not take; therefore he - -

chose his scale factors pessimistically. Therefore, variables
tended to take values almost always much smaller than could fit in
the fields allocated for them; most leading bits went to waste.

' This wastage became obvious to practitioners on early machines
that displayed all their memory bits as dots on cathode ray tubes
(like TV screens) . A partial remedy was called " floating
vectors "; the idea was to compute at run-time one scale factor
for a whole array of numbers, choosing the scale factor so that
the array’s bigdest number would barely fill its field. By 19561
James H. Wilkinson had used this scheme extensively for matrix
computations on the Pilot ACE (an English computer built to
specifications considerably less ambitious than had first been put
forward by Alan M. Turing, among whose previous designs were the
still very secret computers the British used to decipher German
radio messages during World War II). TFloating vectors continued
both to waste leading bits and to require careful prescaling lest
rightmost bits be lost from some tiny values of high subsequent
significance. Where floating-point deserved to be used, no
practical alternative existed.

By 1852 every electronic computer solving engineering problems
had software floating-point availeble for programmers to use if
they wished, despite its awesome speed penalty, von Neumann’s
contrary views notwithstanding. Were his opinions just wrong?

In retrospect, we surmise that he was trying to meke a virtue of
necessity. Had floating-point been part of the original design,-
it might well have been tooc complex to build successfully from the
hardware components (vacuum tubes)} available at the time. In
Germany in 1939, K. Zuse had proposed to build a computer with
floating-point hardware, and the German Air Ministry had denied
asuthorization for its construction on the grounds that so complex
a machine could not be built within a year or two, by which time
they expected to have won the war. (The rest of the world must
be grateful now for that decision.) Whether von Neumann knew
about that decision or not in 1946, his instincts probably
averted a similar fate for the Princeton project.

HISTORY1 Work in Progress W. Keghan Jan. 13, 1892

By 1987, magnetic cores made larger faster memories commonplace;
"semi-conductors were beginning to replace bulky unrelisble vacuum
tubes; and floating-point hardware was almost ubiquitous. David
H. Wheeler had microprogrammed hinary floating-point intoc M. V.
Wilkeg” FEDSAC Il in Cambridge, England; in the U. 5., a
decimal floating-point unit was available for the IBM 650 ; and
goon the IBM 704, 708, 7080, 7084 ... series would offer binary
floating-point hardware for double-precison as well as single.
Everybody had it, but it was everywhere different.

Diversity vs. Portability '
Since roundoff introduces a bit of error into almost all floating-
point operations, to complain about another bit of error seems

pPicayune. 5o, for twenty years nobody complained much that thosze
operations behaved a little differently on different machines. If

software required clever tricks to circumvent these idiosyncracies

and finally deliver results correct in all but the last several
bits, such tricks were deemed part of the programmer’s art. For
a while programmers succeeded magnificently, especially at matrix
computations which (though this was not appreciated at first)
turned out to be sensitive to the details of computer arithmetic
in only a very few places. Books by Wilkinsonw and widely used
software packagezs like LINPACK and EREISPACK sustained a false
impression, widespread in the sarly 1970s, that a modicum of
skill sufficed to produce portable numerical software.

"Portable"” here means that the software is distributed as source-~
code in some standard language (Algol or Fortran at that time)
to be compiled and executed on practically any commercially
significant machine, and will then perform its tesk at least
almost as well as can any other program perform that task on that
machine. In so far as numerical software has often been thought
to consist entirely of machine-—independent mathematical formulas,
. its portability has often been taken for granted; the mistake in
that presumption will become clearer later. What should be clear
now is that software is far more valuable if portable than if not.

Packages like LINPACKE and EISPACK had cost so much to develop,
over a hundred dollars per line of Fortran delivered, that they
could not have been developed without U. 8. government subsidy,;
their portability was a precondition for that subsidy. But nobody
- thought to distinguish how various components contributed to their
cost. One component was algorithmic:-— devise an algorithm that
deserves to work on at least one computer despite its roundoff and
over/underflow limitations. Another component was the software
engineering effort required to achieve and confirm portability to
the diverse computers commercially significant at the time; this
component grew more onerous as ever more diverse floating-point
arithmetics blossomed in the 1970s. And yet, scarcely anybody
realized how much that diversity was costing us all.

HISTORY1 . Work in Progress ‘W. Kahan Jan. 13, 1992

A Backward Step

Early evidence that somewhat different arithmetics could engender
grossly different software development costs had been put before
us in 1964 and overlooked. It happened at a meeting of SHARE,
the IBM mainframe users’ group, at which IBM annocunced system
/3680, the successor to the 7084 geries. One of the speakers
was Hirondo Kuki, a mathematicien working at the University of
Chicago as a programmer, who had considerably improved the run-
time library (SQRT, EXP, C08, ... } for the 7084 and then,
.under contract to IBM, had produced the first run-time library
for system /360. He described the tricks he had been forced to
devise to achisve for the /360 1library a level of quality not
quite so fine as he had previously achieved for the 7084,

Members of the audience who did not know Kuki well thought he
was boasting about his clevernsess; he was not. He was trying to

warn us that the /360’s floating-point differed from the 7094’s

in disagreeable ways that would oblige us all to entertain tricks

- like hisz unless the /360’s arithmetic were changed. Many months
passed and many /360s were delivered before SHARE’s membership

came to eppreciate how troublesome that obligation would become.

Part of the trouble could have been forstold by wvon Neumann had
he been still alive. In 1948 he and Goldstine had published a
lengthy error analysis so difficult and so pessimistic that hardly
anybody paid attention to it; however, it did predict correctly
that computations with larger arrays of data would probably fall
prey more often te roundoff. IBM /36808 had bigger memories than
7094s, so data arrays could grow bigger and did. To make matters
worse, industrial advances had come to depend upon calculations
more accurate than before; but new /360s had narrower single—
precision words (32 bits wve. 368)} and used a cruder arithmetic
{ hexadecimal vs. binary } with consequently poorsr worst-case
precizsion (21 sig. bits vs. 2% } than cold 7094s. Consequently
software that had almost always provided (barely } satisfactory
accuracy onh 7094z +too often produced inaccurate results when run
on /360s. The guickest way to recover sdequate accuracy was to
replace old codes’ SINGLE PRECISION - declarations by DOUBLE
PRECISION before recompilation for the /360. This practice

- exercised /360 double-precision far more than had been expected.

Also unexpected was the frequency with which double-precision
versions of all software, old and new, failed mysteriously on
/36808 in ways that we had not seen happen in single-precision.
That was what Kuki had tried to warn us would happen.

The early /360s8° worst troubles were caused by lack of a guard
digit in double-precision. This lack showed up in multiplication
as a failure of identities like 1.0%X = X because multiplying X
by 1.0 dropped X’s last hexadecimal digit. Similarly, if X
and Y were very close but had different exponents, subtraction
dropped off the last digit of the smaller operand before computing
X-Y . This last aberration in double-precision undermined a
precious theorem that single-precision (and most other machines’
arithmetics then and now } honored:

HISTORY1 Work in Progress W. Kahan Jan. 13, 1982

If 1/2 < X/Y < 2 then no rounding error can occur when

X ~Y is computed; it must be computed exactly.
(However, when X and Y are so tiny that exponent
underflow afflicts X -Y , machines that do not conform
+to IEEE 754/854 may flush it to 0.0 .}

Innumerable computations had benefitted from this minor theorem,
most often unwittingly, for several decades before its first
formal announcement and proof; see pp. 38-40 of Goldberg {19917,
or pp. 138-153 of Sterbenz (1974) cited therein, for proofs and
some applications. We had been taking all this stuff for granted.

Until we lost them, we had not appreciated how important were the
identities and theorems about exact relationships that persisted,
despite roundoff, when approximate arithmetic was implemented in
reasonable ways. Previously, all that had been thought to matter

were precision (how many significant were digite carried) and

range { the spread between over/underflow thresholds }. BSince
/360’s double-precision had more precision and wider range than
7084's, software was expected to continue to work at least about
as well as before. That was a mistake comparable to ignoring the
nutritional importance of vitamins and traces of minerals.

Programmers who had matured into prodram managers were appalled at
the cost of converting 7094 software to run on /360s. In 1966
at a SHARE tutorial on the subject they vented their feelings:

» My old 704 never used to do things like that 2o me.”
IBM heard them and agreed to meet a small subcommittee of SHARE,
Kuki included, that had been trying vainly for two years to get
IBM to alter /360 floating-point. This committee was surprised
and grateful to get a fair part of what they asked for, including
all-important guard digits. By 1968 thegse had been retrofitted
to /380s in the field at considerable expense; WOrse than that
was customers’ loss of faith in IBM’s infallibility. Those few
IBM employees who can remember the incident still shudder.

But every army large enough includes somebody
who does not get the message, or forgets it.

The Boys who Built Bombs

Seymour Cray has been associated for decades with computers that
were, when he built them, the world’s biggest and fastest. He
designed the arithmetic for the Univac 1107 in the late 1950s,
the CDC 8800 in the mid 1980s, and his namesake CRAYs in the
late 1970s. He has always understood what his customers wanted
most: Speed. And he gave it to them even if, in so doing, he
also gave them arithmetics more interesting than anyone else’s.
Among his customers have been the great government laboratories of
the Atomic Energy Commission (now the Department of Energy)
1ike those at Livermore and Los Alamoz vhere nuclear weapons
were designed. The boys who built bombs had to overcome Mother
Nature’s challenges, next to which the challenges of interesting
arithmetics must have seemed pretty tame.

HISTORYZ Work in Progress W. Kahan “Jan., 13, 1882

Perhaps all of us could learn to live with arithmetic idiosyncracy
if only one computer’s idiosyncracies had to be endured. Instead,
when different computers’ different asnomalies, each one a petty
nuisance by itself, accumulate, then software dies the Death of
a Thousand Cuts. Here is an example from just Cray’s machines:

if (X == 0.0) Y = 17.0 else ¥ = Z/X .

Could this statement be stopped by a DIVIDE-BY-ZERO ERROR? On a
CDC 8800 it could. The reason was a conflict between the 6800°s
adder, where X was compared with 0.0 , and the multiplier and
divider. The adder’s comparison examined X ‘s leading 13 bits,
which sufficed to distinguish zZero from normal nonzero floating-
point numbers X . The multiplier and divider examined only 12
leading bits. Consequently, tiny numbers X existed which were
nonzero to the adder but zero to the multiplier and divider. To

avoid disasters with these tiny numbers, programmers learned to = =

replace statements like the one above by
it (1.0%X == 0.0) Y = 17.0 else Y = Z/X .

Qutrages like this had to be perpetrated in all software intended
to be portable to the 6600 and its descendants (7600 and Cyber
17 Y. Then CRAYs appeared; they can terminate the foregoing
statement’s execution on an OVERFLOW ERROR in two ways. One is
to produce numbers X so huge that 1.0%X overflows although
0.8999%X would be safe; this can happen because CEAYs test for
exponent overflow during multiplicetion before the final one-bit
left shift for normalization, if needed, occurs. The second way
an undeserved - OVERFLOW ERROR can happen is when both Z and X
are very tiny, and hence Z/X is not big at z2ll. Trouble can
arise here because CRAYs compute not Z/X but 2Z%(1/X) , and
1/X can overflow before the multiplication if X is too tiny.

Of course these calamities must be rare since a CRAY's overflow
threshold is gargantuan, near 10%4¢® ; that is why the boys who
build bombs are willing to take their chances that such calamities
will not occur. The risk of calamity weighs most heavily upon the
conscientious would-be portable programmer, the kind we wish had
programmed the last piece of software that let us down. How might
she revise the foregoing statement so that it will always work?

It cannot be simple since it depends upon the provenance of Z .

¥ For most men (2ill by losing rendered sagerd
Will bavk their ocuwn cpinions by a wager.” Lord Byron

Risk management challenges good taste, and excites pleasure among
those so confident of their own good taste that they can attribute
their occasional lapses to inevitable but excusable bad luck. It
must have been bad luck that befell James Sethian in 1989 when
he tried to compute on a CRAY Y-MP the Fortran expression
ACOS(X / BQRT(XxX + Y*Y)) '

and received rude messages instead. He knew that X and Y were
never both extremely tiny, nor could either of them det terribly

HISTORYZ2 . Work in Progress W. Kahan Jan. 13, 1982

big; and this knowledge was confirmed after he and CRAY’s local
engineers had spent a week or so to uncover his troubles’ cause:

Roundoff had led to a computed value X/SQRT(XxX + Y¥Y¥) » 1.0 ,
and ACOS had quite rightly declined to compute its arccos.

The bows who built bombs were not surprised; five rounding errors
contaminated the computation of X/SQRT({X*X + ¥Yx¥) which, in case
{¥! < X/10° , would come so close to 1 that two rounding errors
might easily push it beyond. An elementary programming oversight.

That’'s not quite true. Despite five rounding errors, the values
computed for X/SART(X*X + ¥*Y) always lie between -1.0 and
+1.0 inclusive on every commercially significant computer and
caloulator except CRAYs (and perhaps the Intel RISC i860 chip
if it is used with grubby divide and square root software). This
assertion is provable mathematically, though the proof is easier
for binary floating-point on IEEE 754,884 conforming machines or
DEC VAXs than for hexadecimal on IBM /380s or /370 or their
imitators, and much harder for decimal calculators. On CRAYs,
however, if X 1is chosen at random and [Y! < X/10° then the
computed values in question will exceed 1 by a rounding error at
least about 5% of the time, according to recent experiments.

Why is a CRAY so0 unlucky? Its multiplier is economized; about
1/3 of the bits that normal multiplier arrays generate have been
left out of CRAY multipliers because they would contribute less
than a unit to the last place of the final CRAY-rounded product.
Consequently a CRAY’s multiplier errs by almost a bit more than
might have been expected. This error is compounded when division
takes three multiplications to improve an approximate reciprocal
of the divisor and then multiply the numerator by it. Square root
compounds a few more multiplication errors. On a CRAY Sethian’s
formule entails rather more than five rounding errors, So it must
be replaced by something more complicated:

ACOS(MIN(ONE, MAX(-ONE, X/SQRT(XxX + ¥*Y)) })
The tests and branches implicit in MIN and MAX ars unnecessary
nuisances when this formula is compiled to machines other than
CRAYs, and doubly annoying because they replicate tests already
incorporated into ACOS.

Sethian was unlucky in his choice of a CRAY to run his program,
but lucky because its failings were comparatively eagsy to uncover.
Failures due to roundoff are generally harder to find and harder
again to remedy. Far worse are the situations when idiosyncratic
arithmetic leads to miscalculations that are accepted unwittingly
ag correct, 80 subsequently a feasible project is misclassified
as impossible and not attempted; such errors are rarely uncovered
until far too late if ever. Nobody knows how often they occur. A
real—life occurrence of that kind will be described later.

Computing has laws like those of Mathematics and of Physics.
HWe cannot know all those laws nor may we break one with impunity;
those laws predict that anything bad that can happen will happen.

HISTORYZ , Work in Progress W. Kahan ' Jan. 13, 1992

To-day’s CRAYs lack a guard digit in subtraction partly because
Cray’s customers had bscome accustomed to getting along without
it on his earlier machines. The CBC 6600, arguably the world’s
first real RISC computer, had not so much lacked a guard digit
as it had been made to look that way by almost all its compilers;
it needed fully five machine instructions to subtract with a guard
digit, only two to subtract without. The fast way drove out the
slow even though the fast was occasionally slightly wrong.

The boys who built bombs rationalized the lack of a guard digit in
several ways: _

1. lLack of a guard digit does not invalidatle error-analyses like
thogse Ffor matrix computation published In HNilkinson's books.
The irony here is that Wilkinson had devised his analyses to
explain arithmetic without a guard digit, not to excuse it.

2. If a program fails for lack of a guard digit, it can usuvally
be repaired, as Sethian's was, at a tolerable cost.
Can that cost be appraised realistically by employees of an
organization whose motto, according to one wag, used to be
Hhy use Lead when Gold will do?

3. If a program fails for lack of a guard digit and cannot be
repaired or replaced at a tolerable cosit, it was probably
contrived for that purpose and need not concern practical men.

The third rationalization used to rankls programmers who, to make
software portable to old CDC’s and CRAY’s as well as ordinary
arithmetics, had been compelled to slaborate clever programs into
devious ones. Thenks to their sfforts, the third rationalization
was being turned into a self-fulfilling prophecy. But no londer.

A decade ago, a new algorithm was proposed for the computation on
parallel machines of eigenvectors and eigenvalueis of big symmetric
matrices. This computation interests engineers, scientists and
statisticians intensely. The new algorithm ran rather faster than
its predecessors on all known computer architectures, serial or
parallel, wvectorized or distributed. Alas, roundoff rendered it
numerically unstable; from time to time it produced plausible but
incorrect results. The bigger the dimensions of the matrix, the
greater the likelihood that some part of the output were wrong.

Ten years of diligent error analysis has developed that algorithm
into one portable program which, without compromiszing its speed,
achieves full numericeal stability on all commercially significant
computers except CRAYs. No other program nearly so fast has been
found to work on CRAYs, and not for lack of trying. Peter Tang
and Danny Sorensen, the authors of that program (they call the
critical part Acc_Sec } conclude thus [199173: '

HISTORYZ . Work in Progress W. Kahan Jan. 13, 1992

“ Finally, it is unforitunate that neither Reform rnor Acc_Sec
would work on machines whose arithmetic subtraction lacks a
guard digit (or bit }; notable examples are Crays and
COC%s 2ee Since, despite the many anomalies Cray’'s
arithmetic offers, merely adding s guard digit (or bit !
would allow Acc_Ser 10 work, it is high time to Implement
that crucial bit — especially since the Implementation cost
with today’'s technology is negligible.”

A Financial Calculation '

The following experiment is intended to be performed upon a shirt-
pocket calculator that displays at least 10 sig. dec. Enter a
10-digit telephone number, including area code; take its natural
logarithm; and then take its exponential. Since exp(ln{(x))=x,
the expected result must be the original telephone number, vyet

many telephone numbers change in their last digit or two. Look: & -

LM(9185551212) = 22.94089757 , EXP(22.94089757) = 9185551249 .

In 1974 this experiment was part of a full-page advertisement
for a new 10-digit shirt-pocket calculator which, the ad said,
would always return to the original telephone number. That could
not have been sgaid for the reigning calculators at that time, the
Hewlett-Packard HP-45 and HP-85. The ad neglected to mention a
far more bizarre phenomenon revealed only by several repetitions
of the exp(ln(...}} operation: the new calculator’s telephone
number would diminish by 1 after every seven or so repetitions,
whereas the HP calculators would stick with the second telephone
nunmber they displayed.

wa can the calculators’ different behavior be explained? Which
behavior is preferable?

The behavior of the HP calculators is easy to explain. Let LN
be obtained from In by rounding it correctly to 10 sig. dec.;
In(91885851212) 22.94089758 80066347 ... ,
LN(9185551212) = 22.94089757
Obtain EXP from exp similarly;
' exp(22.94089757) 9185551248.68126188 ... ,
EXP(22.94089757) 8185551249.
Although the errors committed in rounding to 10 sig. dec. are as
small as they can be, each under half a unit in the last place
retained, two such errors suffice to force the telephone number
to change by 37 . On the other hand, repeated EXP(LN(...})
operations leave the second telephone number unchanged; in fact,
the identity EXP(LN(EXP(LN(x)}})) = EXP(LN(x)) is easy to prove
for every telephone number x . Therefore, the HP calculators
behaved as well as could be expected from 10-digit machines.

I 1t

Explaining the behavior of the new calculator was not so easy. It
actually carried 13 sig. dec. in all its internal registers but
rounded the displayed value to 10 s=ig. dec. and accepted at most
10 sig. dec. from the keyboard. This strategy brings to mind a -
mother’s advice to a modest maiden: You need not show Everyihing.

HISTORY3 Work in Progress W. Kahan Jan. 13, 1982

Unfortunately, the calculator’s arithmetic lacked guard digits in
multiplication and subtraction, and discarded rightmost digits by
chopping instead of rounding. For In{8185551212} it would gst
something like 22.94089758 B899 but display only 22.94088787 ;
after that exp(22.984088756 599) would be computed as something
like 9185551211.848 , 1low by about 0.0012... , but displayed
as 8185551212 . What you saw on this new calculator was not
guite what you got.

Repeating the exp(ln(...}) operation would cause the 13-digit
value held in a register to drift slowly downward by a few units
in the eleventh or twelfth digit, leaving the 10-digit display
unaffected until after several downward drifts had taken place.
Since the calculator provided no straightforward way to see all
13 digits, the display’s spasmodic decreases seemed whimsically
unpredictable. :

That whimsy hed not yet become generally known when a meeting was
convened at Hewlett-Packard to congider the company’s reaction
to the advertigement. This was not the first time (nor will it
be the last Y for a company to face published benchmark results
that cast aspersions upon its product’s integrity and prowess., A
few test calculations performed upon the new competitor and the
0ld HP machines to compare their utility for typical engineering
work had not turned up anything much to choose between them other
than the telephone number test. Consequently the advertisement’s
significance as a benchmark was unclear. Opinions varied, from a
conviction that quibbling about digite beyond the 86th (never
mind the 110th or 13th } was a waste of time, to a fear that
that benchmark was a harbinger of something calamitously worse.

Also present at the meeting as a consultant was a mathematics
profesgor from & nearby university. His first contribution to the
meeting was an exhibition of the new calculator’s whimsy described
above; this was amusing. Next he contributed a demonstration
that each of the three calculators under consideration had its own
inexplicable idiosyncracies, any one of which could yield results
unexpectedly far from reasonable expectations; this was alarming.
Bis third contribution was a proposal to change the way Hewlebtt-
Packard calculators carried out their arithmetic; this proposal
was confusing, but what else could be expected from a professor?

His proposal was to continue displaying 10 sig. dec., accepting
it from the keyboard, and storing it in those registers that held
the calculator user’s data and intermediste results, but to make
a few wider registers with, s=say, 13 sig. dec. and 3 exponent
digits available to whoever had to microprogram the calculator’s
algorithme. For every built-in operation invoked by a keystroke,
say LN(x) for example, the data x would first have three
trailing zZeros appended, then the logsrithm microprogram would be
executed carrying about 13 sig. dec. and its result rounded to
produce LN{x} very nearly correctly rounded to 10 sig. dec.

It sounded bizarre. First build extra digits into the central
processing unit; then throw them away.

10

HISTORY3 HWork in Progress W. Kahan Jan. 13, 1992

Dennis Harms, a mathematician working as a microprogrammer at the
time, attended that meeting tono. He decided he could implement.
this proposal and test it sconer than he could check the intricate
error—analysis put forward to motivate it. He confirmed what the
consultant had predicted, that carryving 13 sgig. dec. internally
prermitted almost every function in the calculator to be performed
beautifully rounded to 10 sig. dec. with a comparatively simple
algorithm, and the anomalies that afflicted the older calculators
went away. All HP calculators now carry those extra digits.

For several years the architectural changes Harms had introduced
demonstrated their value by simplifying the introduction of novel
and mathematically sophisticated numerical algorithms into service
among new scientific and financial calculators. Let’s look at a
typical financial task, the computation of the interest rate x
for a transaction with an initial cash flow A, & final cash
flow F , and N-1 constant and regularly spaced cash flows P
between them. The gigns of the cash flows are pogitive for income
and negative for outflow. The pericdic interest rate satisfies

AT+ + P((14x)" - 1}/x + F = O .

N can be huge, over 100000 if electronic funds transfers take
place hourly; and if N is huge then x can be so tiny that the
middle term degenerates into roundoff/x unless something special
is done to cope with this removable singulariiy. Alsoc the graph
of the equation is not a gentle curve but almost has a corner or
spike if N is huge. That isg why solving the eguation for x
poses three interesting challenges:

1: Devise a program that copes with all data that determine only
" one root X » —-1. Any data sequence {A, P, F} with just one

sign-reversal is admissible and so is any positive integer N
though any N > 1000000 has at best speculative significance.

2: That program must finish in fewer thaen 250 "floating-point
operations lest customers lose patience waiting for it.

3: The result =x must be accurate to within a unit in its last
digit displayed, ' or the ninth digit after the decimal point.

Of course the challenges were overcome, and with very gratifying
results; one of the calculators that use that program, the HP-
12C , is still on the market ten years after its introduction,

serving real estate brokers and financial advisors etc. as part of
their uniform. More important, +wo valuable lessons were learned
from several years of continuous experience designing calculators:

First, every detail of the arithmetic and its architecture seemed
to matter; none could be changed without the risk of disagreeable
consequences. For instance, a nicroprogrammer working from the
consultant’s notes found a place where an intermediate result was
rounded to 310 s=ig. dec. and, thinking that to be an oversight,
changed it to 13 to achieve higher accuracy. The program broke;
it had not been an oversight. Somsehow the aldorithm depended upon
the relationship between the two precisions, 10 and 13 =sig. dec.

11

HISTORY3 Work in Progress W. Kahan Jan. 13, 1992

Second, we learnsd that careful attention to the details of one’s
computer arithmetic could confer considerable commercial advantage
over less meticulous competitors. This is how 8Sualiity FPayve OFF.
It is a lesson learned at great cost by the automobile, appliance
and semiconductor industries, among others. Unfortunately, the
payoff comes 00 slowly to be appreciated by workers who change
jobs after less than five years, as all too many have done for a
few decades in the fast-changing computer industry. And a payoff
need never come unless the marketplace informs itself about
agpects of qQuality that can at times be difficult to quantify.

Never under-estimate the awesome harm an ill-
informed marketplace can inflict upon itself.

Making the World Safe for Floating-Point, or vice-versa

William Kahan was an undergraduate at the University of Toronto

in 1953 when he learned to program its Ferranti-Manchester Mk.
1 computer. (This precocious machine, with an instruction set
attributed to Turing, had been built for the engineering market
but, after a handful were sold, it flopped ignominiously partly
because its mean free time between errors was fifteen minutes on a
good day.} By starting so early, Kahan became acquainted with a
wide range of devices and a large proportion of the personalities
active in computing; the numbers of both were small at that time.
He has performed computations on slide-rules, desk-top mechanical
calculators, table—top analog differential analyzers, plug-board
rrogrammed accounting machines, and all but the very earliest
electronic computers and calculators mentioned in this history.

Kahan’'s desire to deliver reliable software led to an interest in
error analysis that intensified during two post-doctoral years in
England, where he became acquainted with Wilkes, Wheeler and
especially Wilkinson. In 1860 he resumed teaching at Toronto,
where an IBM 7090 had been acquired, and was granted free reign
to tinker with its operating system, Fortran compiler, and run-
time library, but not its hardware. (He denies he ever came
near the 7080 with a soldering iron in his hand, but admits to
“asking to do so.) One of his stories from that time illuminates
how misconceptions and numerical anomalies built unwittingly into
a computer system can incur awesome hidden costs.

In 1962 a graduate student of aeronautical engineering had been
uging the 7090 +to simulate wings he was designing for very short
take-offs and landings. He knew such a wing would be difficult to
control if its characteristics included an abrupt onset of stall,
but he thought he could aveocid that. His simulations were telling
him ctherwise. Just to be sure that roundoff was not interfering,
he had repeated many of his calculations in DOUBLE PRECISION and
gotten results much like those in SINGLE; his wings had stalled |
abruptly in both precisions. Disheartened, the student had given
up that line of ingquiry and was locking for some other problem on
which to write a Ph. D. thesis.

12

HISTORY3 Work in Progress W, Kahan Jan. 13, 1992

Meanwhile Kshan had decided to replace 1IBM’s logarithm program
{ ALOG ¥ in the run-time library by one of his own he hoped would
provide better accuracy. While testing it, and to zee how much
difference it would make to other 7080 users, he re-ran those
of their jobs that had ussed the old ALOG using the new instead.

{ If that were feasible nowadays it would be a deplorable invasion
of privacy.} Two results had changed significantly; one was the
student’s, and Kshan approached him to find out what happened.

The student was flattered that hiz work interested anyone else,

but puzzled. Much as the student preferred results with the new

ALOG — they predicted a gredual stall - he knew they must be

wrong because they disagreed with his DOUBLE PRECISION results.

And his program did not call ALOG. It did include something like
C = EXP(-G(1.0}}

X .
Y C
IF {(X # 1.0 Yy ¥ = Xek(G(A/(1.0 - X}y .
This last line explained how ALOG entered the picture; at that
time Fortran compilers defined Xk%Z as EXP({ Z*%ALOG(X) }

e

The discrepancy between SINGLE and DOUBLE PRECISION results

went away a few days later when a new release of IBM’s DOUBLE

PRECISION arithmetic software for the 7030 arrived. Now the

student’s wing stalled gradually in both precisions. He went on
to write a thesis about it and to build it; it performed as he

had predicted. But that is not the story’s happy ending.

In 1983 the 7080 was replaced by a faster 7094 with double-
precision floating-point hardware but otherwise practically the
same instruction-set as the 7090. Only in DOUBLE PRECISION and
only using the new hardware did the wing stall abruptly again. A
lot of time was spent to find out why. The 7094 hardware turned
out, 1like the supsrseded 7090 s=software, +to lack & guard bit in
DOUBLE PRECISION. MNow that he knew what was missing, the student
figured out how to overcome this deficiency; he simply replaced
(1.0 - X} by ((0.5 - X} + 0.5y . With this trick, the program
worked perfectly. But that is not the story’'s happy ending.

The student’s program worked well on every computer he met until
he went to work for an aircraft manufacturer. The program failed
on his new UNIVAC 1107; it lacked a guard bit in subtraction too
but, inexplicably, the trick seemed not to compensate for that.
The now ex-student had to replace X¥¥(G(X}/((0.5 - X) + 0.5)) by
an entirely different program, based upon power series, that ran
slower and yielded poorer results barely adequate for the purpose.
Only several years later did he discover that the trouble on the
UNIVAC 1107 had been caused by a compiler that had " optimized "
({(0.5 ~ X} + 0.8) back to (1.0 - X} in order to save one add.

“ God Ie In the details.” ..: 22777 Bomwe cleric ?P???
“ The Devil Ie in the details.” eee R2P? Bome architect PP?7?
“ fOur life ige frittered away by detail.” ... Henry David Thoreau

13

HISTORY4 Work in Progress W. Kahan Jan. 13, 1992

By 1963, Kahan had become active in SHARE working with Kuki
and others to improve the run-time library and, after /360 was
announced, to correct its hardware. In early 1966 he visited
Stanford University’s pioneering Computer Science Department,
still being run by its founder George Forsythe. There, besides
teaching about error-analysis, Kshan sampled the dubious joys of
trying to run programs on two utterly different computers sitting
_in edjecent rooms; one was an IBM 7080, the other a BURROUGHS
B 5500. He found that he could get about four times as much work
through the B 5500 as through the 7090 despite that the 7090
ran long floating-point intensive computations four times faster,
and despite his thorough familiarity with the 7080°’s system.

Kahan traced the difference in throughput to fanatical attention
to detail lavished upon the B 6500’s design by its architect,
Robert §. Barton, and perhaps also by 2 summer hire from Cal.
Tech., Donald E. Knuth, who had worked on the run—-time library.
A programmer could easily predict what the B 5500 would do for
her (in Algol 3}, but had to imagine what the 7090 might do Zo
her (in Fortran). Unfortunately, attention to detail retards
the designer’s progress and is, therefore, a losing strategy for
a marketplace that values megaflops/sec. over all else. Stanford
replaced its B 5500 by a " faster " IBM /360-67 in 1967.

On returning to Toronto, Kahen combined his experience with the
7094 and B 5500 into a scheme for handling exceptions humanely
on the /360 and, with the aid of friends at the University of
Haterloo, implemented it on an early /360 there. However, IBM
software developers in New York had committed themselves to an
elaborate scheme of their own which persists to-day though nobody
uses it. In general, the handling of floating-point exceptions
like over/underflow and division by zero is in roughly the same
state it was in 285 years ago, but getting worse because of a
trend towards concurrsnt computation and imprecise interrupts.

Meanwhile the lure of California was working on RKahan and his
family. At the request of his younger son, then aged 3, they
came to Berkeley and he to the University of California there.

Berkeley's computer was a CDC 6400, a cheaper 8800. Attempts
to convert Kahan's Fortran library from the 7094 to the 6400
progressed glacially. The last straw was an inscruteble failure
on the 6400 of a program that, on the 7084, had automatically
constructed regular solutions for singular differential equations,
something regarded as beyond the stete of numerical analysis then
and, in some quarters, now. Convinced that bugs infested the
6400’s hardware, and aided by logic circuit diagrams in out-of-
date maintenance menuals tossed by some well-wisher into Kahan’s
wastebasket, he and a student, David Lindsay, pored over core
dumps. There was the evidence that convicted both compiler and
hardware of arithmetical perversity, but nobody at CDC with the
power to change things felt able to act on it in 1970,

Lindsay’s report reached another 86400 user, Niklaus Wirth in
Zurich, who had encountered similerly inscrutable snomalies while

14

HISTORY4 Work in Progress W. Kahan Jan. 13, 1982

testing a compliler for his new language Pascal. Armed now with
incontrovertible evidence, Wirth sent a2 letter of remonstrance
to CDC’s office in Zurich. The reply said (in German)

"1, CDC’s arithmetic does not do what you allege, and
2. If it did, it would not matter. "
Wirth concluded that the best Pascal could do with the REAL

data-type was leave it implementation~defined;"” the less said
about it, the better. Kahan concluded that a diverting paper
1972] was all he could salvage from the affair. Several years
later at the University of Minnesota in Minnespolis a Fortran
compiler was written that compensated for some of the 6600°'s
strande ways, but by then the end of the 6600 - 7600 - Cyber 17x
line was in sight.

A top-down approach to high—-quality floating-point seemed still a
fair approach in 1972-3 when, with Fred Gustavson and Fred -
Ris at IBM Research in Yorktown Heights, Kahan helped develop
an ideal floating-point specification for a Future System being
contemplated to supplant the /3680 (now /370) architecture.

It was a paper study; IBM knew that the mid 1970s was not the
right time (will it ever come?)} to kill the goose that laid
golden eggs for it. Similar reasons would keep every other major
mainframe maker from changing its floating-point in any way not
compatible with prior practice. A top-down approach led nowhere.

The bottom—up approach presented itself in 1874 when accuracy
questions induced Hewlett-Packard’s calculator designers to call
in a consultant. The consultant was Kahan, and the consequences
have been described above. Fruitful collaboration with congenial
coworkers restored his spirits and prepared him for the next and
crucial opportunity.

It came in 1976, when John F. Palmer at Intel was empowered
to specify the “best possible" floating-point arithmetic for all
of Intel’s product line. The 8086 was imminent, and an 8087
floating-point coprocessor for the 8086 was being contemplated.
Palmer had cobtained his Ph. D. at Stanford a few years before
and knew whom to call for counsel of perfection: Kahan. They put
together 2 design that would have besn obvicusly impossible only a
few vears earlier and looked not quite possible at the time. But
a new Israeli team of Intel employees led by Rafi Navé felt
challenged to prove their prowess to Anericans, and leaped at an
opportunity to put something impossible on a chip - the 8087,
By now, floating-point arithmetics that had been merely diverse
among mainframes had become anarchic among microprocessors, one
of which might be host to a dozen varieties of arithmetic in ROM
firmware or software. Robert G. Stewart, an engineer prominent
in IEEE activities, got fed up with anarchy and proposed that
the IEEE draft a decent floating-point standard. Simultaneously
word leaked out in Silicon Valley that Intel was going to put
onto one chip some awesome floating-point well beyond anything its
competitors had in mind. They had to find a way to slow Intel
down, so they formed a committee to do what Stewart requested.

15

HISTORY4 Work in Progress W. Kahan Jan. 13, 1992

Meetings of this committee began in late 1977 with a plethora of
competing drafts from innumerable sources, and dragged on into
1885 when IEEE Standard 754 for Binary Floating-Point was made
official. The winning draft was very close to a submission from
Kahan, his student Jerome T. Coonen, and Harcld 3. Stone, a
professor visiting Berkeley at the time. Their draft was based
upon the Intel design, with Intel’s permission of course, as
gimplified by Coonen. Their harmonious combination of features,
almozst none new, had at the outset attracted more support within
the committee and from outside experts like Wilkinson than any
other draft, but they had to win nearly unanimous support within
the committee to win official endorsement, and that took time.

In 1880 1Intel became tired of waiting and released the 8087
for use in the IBM PC. In 1982 Motorola announced its 68881,
which found a place in Sun IIIs and Macintosh IIs; Apple had
been a supporter of the proposal from the beginning. Zilog, with
Cocnen’s help, produced its Z 8070 coprocessor for the Z 8000
but then withdrew from a market that was getting crowded. Another
Berkeley graduate student, George 5. Taylor, had soon designed
his second high-speed implementation of the proposed standard for
the ELXS8I 8400, an early super-minicomputer. The standard was
becoming de-facito before its final draft’s ink was dry.

Among the attractions of IEEE Y54 wes a Hajorization Properiy:
Nunerical software, designed to be portable to pre-existing
computers or capable of running after recompilation on at least
two different arithmetics, would almost surely run at least
about az well on a standard-conforming machine as on any other
of nearly the same memory capacity, speed and precision.

This property was a design goal for the standard, as it had been

for the 8087. It evidenced a kind of mathematical cleanliness in

a design that introduced the nminimum possible irregularity. For

exanple,

for k=1, 2, 3, .., 8000000 do
x = float(k) ;
for 4 =3, 4, 5, 6, 8, 9, 10, 12, 18, 17, 18, 20, .., do
v = float{i} ;
q = x/¥ ; ... rounded in floating-point.
P = Q¥ky ; ... rounded in floating-point.
if { p #x) print "Oops!”
next j ; ... any sum of two powers of 2 .
next k ;
print “"End" .
In the absence of roundoff, " Oops! " could never be printed;

1] #

and IEEE 754 floating-point arithmetic never prints Qops !
either; but every other kind of floating-point arithmetic does
print " QOops! " for some integers J and k that vary from one
machine to ancother. This is not much of a test, but it does show
that IEEE 754 arithmetic preserves something all others lose.

An early rush of adoptions gave the computing industry the false
impression that IEREE 754, like so many other standards, could
be implemented easily by following a standard recipe. Not true.
Only the enthusiasm and ingenuity of its early implementors made
it look easy. In fact, +to implement IEEE 784 correctly demands

18

HISTORY4 Work in'Progress W. Kahan Jan. 13, 1992

extraordinarily diligent attention to detail; +to make it run fast
demands extraordinarily competent ingenuity in design. Had the
industry’s engineering managers reslized this fact, they might
not have been so quick to affirm that, as a matter of policy,

“ We conform 2o all applicable standarde.”

To-day the computing industry is enmeshed in a host of standards
that evolve continuously as technology changes. The floating-
point standards IREE 754/854 (they are practically the same)
stand in somewhat splendid isolation only because nobody wishes to
repeat the protracted wrangling that surrounded their birth when,
with unprecedented generosity, the representatives of hardware
interests acceded to the demands of those few who represented the
interests of mathematical and numerical software. Unfortunately,
the compiler writing community was not represented adequately in
the wrangling, and now that community has been slow to make IEEE

T84's unusual features available to the applications programmer.

Humane exception handling is one such feature; directed rounding
ancother. Without compiler support those features could atrophy;
* llgse it or lose [2.”

The relentless appetite for speed also tends to erode the quality
of floating-point arithmetic by cutting corners that might easily
go unnoticed, for instance by rounding in an idiosyncratic way.
Without performsnce specificetion that computer users can check by
running benchmarks, the customer is obliged to accept assurances
from vendors about conformity to a standard that, even with the
best intentionsz, iz difficult to corroborate. Unfortunately the
computing industry has gotten mixed signals from benchmarks for
speed; +to introduce benchmarks for accuracy too could throw copen
FPandora's Box because of the Stopped Watch Paradox:

A stopped wailch is more accurate than any working wailch

because a working wailch almost never telle the correci

time exactly, but a stopped walch must be exactly right

twice a day. -
Similarly, software that is usually quite wrong can give exactly
correct results for a few problems for which high—quality software
¥ields merely extremely good approximations. Similar phenomena
can occur with floating-point hardware; recall the telephone
number experiment. Guess which kinds of problems might well turn
up as benchmarks! This is an area that needs further work.

At present, IEBEE 754/854 has been implemented to a considerable
degree of fidelity in at least part of the product line of every
North American computer manufacturer except Cray Research Inc.,
and they have announced recently that they too will conform 2o
some degree by the mid 19908 to ease the transfer of data files
and portable software between CRAYs and the workstations through
which CRAY wusers have come to access their machines nowadays.

In 1989 the Association for Computing Machinery, acknowledging
the benefits conferred upon the computing industry by IEEE 754,
honored Kshan with the Turing Award. On accepting it, he gave
thanks to his many associates for their diligent support, and to
his adversaries for their blunders. So, not all errors are bad.

17

HISTORY4 Work in Progress W. Kahan Jan, 13, 1992

References and Further Reading

Readers interested in learning more about floating-peoint will find
two publications by David Goldberg [1980, 19911 good starting
points; they abound with pointers to further reading. 8Several of
the stories told above come from Kahan [1972, 1883]. The latest
word on the state of the art of computer arithmetic is often found
in the PFroceedings of the latest IEEE sponsored Symposium on
Computer Arithmeitic, held every two or three years; the tenth
was held in 1991,

A. W. Burks, H. H. Goldstine, and J. von Neumann [1846]
"Preliminary discussion of the logical design of an electronic
computing instrument" Repord to the U. S« Arny Ordnance Dept.,
p. 1; also in Papers of John von Neumann ed. by W. Aspray
and A. Burks, The MIT Press, Cambridge Mass., and Tomash
Publishers, Los Angeles Calif. (1987} pp. 87-1486.

D. Goldberg {19801 "Computer Arithmetic" Appendix A of Computer
Archileciures A Quanititative Approach, J. L. Hennessy and D. A.
Patterson, Morgan Kaufmann Publishers, San Mateo Calif.

D. Goldberg [19913 "What Every Computer Scientist Should Know
About Floating-Point Arithmetic"” ACH Compuiing Surveys 23 #1,
5-48.

W. Kahan [1972] "A Survey of Error-Analysis" in Info. Processing
71 { Proc. IFIP Congress 71 in Ljubljena ¥ wvol. 2, pp. 1214-39,
. North Holland Publishing, Amsterdam.

W. Kahan [1983] "Mathematics Written in Sand" Proe. Amer. Stat.
Asgoc. Joint Summer Meetings of 1983, Statistical Compuiting
Section, pp. 12 - 28.

D, C. Sorenson and P. T. P. Tang [1991] "On the Orthogonality of
Eigenvectors Computed by Divide-and-Conguer Technigues" 8SIAM J.
Numer. Anal. 28, 1752-75.

M. V. Wilkes [1985]1 MHemoire of a Computer Pioneer, The MIT
Press, Cambridge Mass.

18

