f
.

D) 274

3K) 275

000 277

Foreword

-
Lo

About Standard
Numerics

Iyt

Part I of this book is mainly for peéple who perform scientific, statistical, or
engineering computations on Apple® computers. The rest is mainly for producers of
software, especially of language processors, that people will use on Apple computers
to perform computations in those.fields and in finance and business too. Moreover, if
the first edition was any indication, people who have nothing to do with Apple
computers may well buy this book just to learn a little about an arcane subject, floating-
point arithmetic on computers, and will wish they had an Apple.

Computer arithmetic has two properties that add to its mystery:

T What you see is ofien not what you get, and
0 What you get is sometimes not what you wanted.

Fioaung -point arithmetic, the kind computers use for protracted work with approximate
data, is intrinsically approximate because the alternative, exact arithmetic, could take
longer than most people are willing to wait—perhaps forever. Approximate results are
customarily displayed or printed to show only as many of their leading digits as matter
instead of all digits; what you see need not be exactly what you've got. To complicate
matters, whatever digits you, see ate decimal digits, the kind you saw first in school and
the kmd used in hand-held calculators Nowadays almost no computers perform their
arithmetic with decimal dnglts most of them use binary, which is mathematically better
than decimal where they differ, but different nonetheless. So, unless you have a small
integer, what you see is ra:ely just what you have.

In the mid-1960's, comput¢r architects discovered shortcuts that made arithmetic run
faster at the cost of what they reckoned to be 4 slight increase in the level of rounding.
error; they thought you could not object to slight alterations in the rightmost digits of
numbers since you could not see those digits anyway. They had the best intentions, but
they accomplished the opposite of what they intended. Computer throughputs were
not improved perceptibly by those shortcuts, but a few programs that had previously

rare occasions.

. been trusted unreservedly turned treacherous failing in mysterious ways on extremely

—

For instance, a very Important Bunch of Machines launched in 1964 were found to
have two anomalies in their double-precision arithmetic (though not in single): First,
multiplying a number Zby 1.0 would lop off Z's last digit. Second, the difference
between two nearly equal numbers, whose digits mostly canceled, could be computed
wrong by'a factor almost as big as 16 instead of being computed exactly as is normal,
The anomalies introduced 2 kind of noise in the feedback loops by'which some
programs had compensated for their own rounding errors, so those programs lost
their high accuracies. These anomalies were not “bugs”; they were “fearures” designed
into the arithmetic by designers who thought nobody would care,. Customers did care;
the arithmetic was redesigned and repaits were retrofitted in 19677

Not all Capriciously Designed Computer arithmetics have been repaired, One family
of computers has enjoyed notoriety for two decades by allowing programs to generate
tiny “partially underflowed” numbers, When one of these creatures turmns up as the
value of Tin an otherwise innocuous statement like

if'T = 0.0 then Q := 0.0 else Q := 702345.6/(T + 0.00189/T);

it causes the computer to Stop execution and emit a message alleging “Division by
Zero.” The machine’s schizophrenic attitude toward zero comes about because the test
for T = 0.0 is carried out by the adder, which examines at least 13 of T leading
bits, whereas the divider and multiplier examine only 12 to recognize zero. Doing so
saved less than a dollar’s worth of transistors and maybe a picosecond of time, but at
the cost of some disagreement about whether a very tiny number Tis zero or not.
Fortunately, the divider agrees with the multiplier about whether Tis zero, so
programmers could prevent spurious divisions by zero by slightly altering the
foregoing statement as follows: '

if 1.0 * T = 0.0 then Q := 0.0 else Q := 702345.6/(T + 0.00189/T);

Unfortunately, the Same Computer designer responsible for “partial underflow”
designed another machine that can generate “partially overflowed” numbers Tfor
which this statement malfunctions. On that machine, Q wotild be computed
unexceptionably except that the product 1.0 * T causes the machine to stop and
emit a message alleging “Overflow.” How should a programmer rewrite that innocuous
statement so that it will work correctly on both machines? We should be thankful that
such a task is not encountered every day. ‘

Anomalies related to roundoff are extremely difficult to.diagnose. For instance, the
machine on which 1.0 * T can overflow also divides in a peculiar way that causes
quotients like 240.,0/80.0, which ought to produce small integers, sometimes to
produce nonintegers instead, sometimes slightly too big, sometimes slightly too
small. The same machine multiplies in a pectiliar way, and it subtracts in a peculiar
way that can get the difference wrong by almost a factor of 2 when it ought to be exact
because of cancellation, ;

xxil F_oreword: About Standord Numerics

e L A e

Another peculiar kind of subtraction, but different, afflicts the machines that are
schizophrenic about zero. Sets of three values X, ¥, and Z abound for which the
statement

if (X =%Y) and ((X -~ 2} » (Y - Z)} then writeln('Strange!’};

will print “Strange!” on those machines. And many machines will print “Strange!” for
unlucky values Xand Yin the statement P

Kl “

if (X - Y = 0,0) and (X > ¥) then wrlteln(Strange!’).;

because of underflow. ;

These strange things cannot happen on current Apple computers.

1 do not wish to suggest that all but Apple computers have had quirky arithmetics. A few
other computer companies, some Highly Prestigious, have Demonstrated Exemplary
Concern for arithmetic integrity over many years, Had their concern been shared
more widely, numerical computation would now be easier to understand. Instead,
because so many computers in the 1960's and 1970's possessed so many different
arithmetic anomalies, computationd! lore has become encumbered with a vast body
of superstition purporting to cope with them. One such superstitious rule is “Never ask
whether floating-point numbers are exactly equal.”

Presumably the reasonable thing t6 do instead is to ask whether the numbers differ by
less than some tolerance; and this is truly reasonable provided you know what

‘tolerance to choose. But the word neveris what turns the rule from reasonable into

mere superstition. Even if every floating-point comparison in your program involved
a tolerance, you would wish to predict which path execution would follow from various
inpuit data, and whether the different comparisons were mutually consistent. For

_ instance, the predicates X < Y - TOL and Y - TOL > X seem equivalent to the

naked eye, but computers exist (n0r made by Apple!) on which one can be true and the
other false for certain values of the variables. To ask "Which?" violates the
superstitious rule. '

There have been several attempts to-avoid superstition by devising mathematical rules
called axioms that would be valid for all commercially significant computers and
frorn which a programmer might hope to be able to deduce whether his program will
function correctly on all those computers. Unfortunately, such attempts cannot
succeed without failing! The paradox arises because any such rules, to be valid
universally, have to encompass so wide a range of anomalies as to constitute the
specifications for a hypothédtical computer far worse arithmetically than any ever
actually built. In consequence, many computations provably impossible on that
hypothetical computer would be quite feasible on almost every actual computer. For
instance, the axioms must jmply limits to the accuracy with which differential
equations can be solved, ihtegrals evaluated, infinite series summed, and areas of
tiangles calculated; but these limits are routinely surpassed nowadays by program#
that run on most commercially significant computers, although some computers may
require programs that are so special that they would be useless on any other machine,

Foreword: About Standard Numerics xxlif

e el

4———*‘___

Arithmetic anarchy is where we seemed headed until a decade ago when work began
upon IEEE Standard 754 for binary floating-point arithmetic. Apple’s mathematicians
and engineers helped from the very beginning, The resulting family of coherent
designs for computer arithmetic has been adopted more widely, and by more
computer manufacturers, than any other single design, Besides the q’ndoubted

r benefits that flow from any standard, the principal benefit derived from the IEEE
standard in particular is this: e

Program importability: Almost any application of ﬂoating—pdiht'hrithmetic,
designed to work on a few different families of computers in existence before the IEEE
; Standard and programmed in a higher-level language; will, after recompilation, work

at least about as well on an Apple computer or on any other machine that conforms to

‘ IEEE Standard 754 as on any nonconforming computer with comparable capacity
(memory, speed, and word size).

The Standard Apple Numerics Environment (SANE) is the most thorough TE
implementation of IEEE Standard 754 to date., The fanatical attention to detail that

permeates SANE'’s implementation largely relieves Apple computer users from having
to know any more about those details than they like. If you come to an Apple computer
from some other computer that you were fond of, you will find the-Apple computer's
arithmetic at least about as good, and quite likely rather better. An Apple computer It
can be set up to mimic the worthwhile characteristics of almost any reasonable past :
computer arithmetic, so existing libraries of numerical software do not have to be
discarded if they can be recompiled. SANE also offers features that are unique to the
IEEE Standard, new capabilities that previous generations of computer users could
only yeam for; but to learn what they are, you will have to read this book.

As one of the designers of IEEE Standard 754, 1 can only stand in awe of the efforts that
Apple has expended to implement that standard faithfully both in hardware and in
software, including language processors, so that users of Apple computers will actually

reap tangible benefits from the Standard. And I thank Apple for letting me explain in
this foreword why we needed that standard. y : ;

B2

oo bd g

" Professor W. Kahan

Mathematics Department and
Electrical Engineering and
Computer Science Department
University of California at Berkeley
‘December 16, 1987

e = —F L ST 1]

xxiv Foreword: About Standard Numerics

