FURTHER REMARKS ON REDUCING
TRUNCATION ERRORS

Recently Jack M. Wolfe [1] proposed the use of cascaded
accumulators to evaluate a sum of the form & = 2> % u
when ¥ is large and all the ¢’s are of roughly the same order of
magnitude. His intention was to alleviate the accumulation of
rounding or truncation errors which otherwise oceurs when S is
evaluated in the straightforward way illustrated by the following
ForTRAN program.

1 8§=00

2 DO4T 1, N
3 YI=-..

4 8§=847YI
B e

. The rounding or truncation in statement 4 could contribute to a
loss of almost logy N significant decimals in 8. Thiz would be
important in those cases where the values of YI computed in
statement 3 were correct to nearly full machine precision; other-
wise the uncertainty in the YI's would swamp any additional
error introduced in statement 4.

Of course, the simplest and fastest way o prevent such figure-
loss is to accumulate 8 to double-precision. For example, in a
Fortran IV program it would suffice to precede statement 1
.above by the TYPE statement DOUBLE PRECISION § .
The convenient accessibility of double-precision in many ForTrAN
and some ALcoL compilers indicates that double-precision will
goon be universally acceptable as a substitute for ingenuity in
the solution of numerical problems.

In the meantime, programmers without easy access to double-
precision arithmetic may be able to simulate it in the program
above by a method far simpler than Wolfe’s, provided they are
using one of the electronic computers which normalize floating-
point sums before rounding or truncating them. Among such
machines are, for example, the I.B.M. 704, 709, 7000, 7004, 7040,

7044 and 360 (short word arithmetic). .

The trick to be described below does not work on machines
such ag the LB.M. 650, 1620, Univac 1107 and the Control Data
8600 which round or truncate floating-point sums to single pre-
cigion before normalizing them.

In the following program 52 is an estimate of the error eaused
when 8 = T was last rounded or truncated, and is used in state-
ment 12 to compensate for that error. The parentheses in staté.
ment 23 must not be omitted; they cause the difference (8-T)
to be evaluated first and hence, in most cases, without error be-
cause the difference is normalized before it is rounded or truneated,

1 8=00
82 = 0.0

2 DO4I=1,N

3 YI= .-

13 82 = 82 + YI
T=8+82

2 82 = (8-T) + %2

4 8=T

5 ...

Until double-precision arithmetic was made s standard feature
of the ForTran language, the author and his students used this
trick on a 7090 in ForrraAN II programs to perform quadrature,
soive differential equations and sum infinite series,

REFERENCE:

1. Worre, J. M. Reducing truncation errors by programming.
Comm. ACM 7 (June 1964), 355356,
W. Kanan
University of Toronto
RecomvEp Jury, 1964 Toronto, Ontario, Canada

40 " Communications of the ACM . - Volume § Number 1 / January, 1965

’



