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Abstract: A program to solve a real cubic esguation efficiently and as
accurateiy as the data deserve is not yet an entirely cut-and-dried affair.
An iterative method is the best found so far, This method plus some other
issues, like accuracy, scaling, preconditioming and testing, are
discussed in these notes in enough detail to convey an impression of what
Numerical Amalysis is about.

1. Introduction: '
Closed-form formulas for solving the real cubic eguation

AuE 4 Bu2 4+ Cu + D = 0O ‘
in terms of its coefficients A, B, C;, D were discoverad in the -
gixteenth century by Italian mathematicians, but their triumph
turned into disappointment when they discovered an  irreducible
case: the real cubic with three irrational real roots. This case
entails unavaidably the computation of trigonometric functions and

- their inverses during the evaluation of cube roots of a_cmmﬁlam
number. Nowadays trigonometric functions and complex numbers seem

uncbjectionable in a procedure that solves a cubic, . 80 they have
bheen used freely in a modern version of the Italians' formulas
presented below in . §2 of these notes. Alas,  the modern formula
is disappointing too, because it is potentially unstable in the
face of roundeff. Indeed, coefficients abound for which some of
the roots computed from the formula are quite incorrect; several
instances appear among. the sxamples presented in 810 .

Whether & slight modification could protect the Ttalians' formulas
from the worst affects of roundoff remains an open question. The
simplest stable version of those formulas I know is tantamount to
evaluating them twice, as is mentioned near the =snd of 82 . Two
evaluations take long snough to make plau51ble the possibility
that another approach might be faster.

Newton pioneered another approach when he first used the iteration
that now bears his name to solve a cubic.  Computers can follow
his approach provided certain details like where: to start and when

ta stop are mechanized. Those details are the subjecht of 83 , &

long discussion that culminates in a brief but entirely adtomatic
procedure presented as a program. GQBC in &4 . That discussion
provides merely a motive for the program, not a proof of its
correctness, A thorough proof would be far too lengthy to include
in these notes. Instead,. the issues that such a proof would have
to address will be explored and its conclusions summarized.
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The most difficult issue is inaccuracy caused by roundoff. Error
analysis proves that every root computed by GBC is no more in
error than if it had been computed exactly from a cubic whose
cosfficients differ from those given each by a few units in its
last digit carried by the computer’'s flpating-point arithmetic.
This kind of Backward Error Analysis was first publighed in the
late 19%50's by James H. Wilkinson. It suggests that inaccuracy
introduced by the process of solving the cubic is unlikely to be
appreciably worse than inaccuwracies previously intraduced when the
roefficients were computed and rounded off. Therefore, if roots
obtained from GBC turn out too inaccurate for some ulterior
purpose, the trouble may lie not so much with GBC as with the
process that generated the coefficients. Thus does bachkward seror
analysis exculpate the programmer of GBC.  And it does mora.

The uncertainty contributed to the computed roots by raundoaft in
@BC can now be assessed by analyzing the effects upan those roohs
of tiny perturbations of the cubic's coefficients, regardless of
the internal details of GBC . Even without those details, the
analysis is tediousy only its conclusions are summarized in 850
Computed roots turn out normally to be accurate in all but their
last few digits; but in worst cases, when all three roots of the
cubic almost coincide, the computed roots can lose as many as T
thirds of the figures carried. Examples in 8§35, 87 and 810  bear
out this gloomy prediction, to which we shall return later.,

Besides heing too long to include in these notes, the proofs of
the foregoing claims to accw-acy are at least as vulnerable to
error as the short program they are supposed to vindicate. Buch
cldims deserve credence only i¥ they are supported by numerical
experiments. But rounding errors committed during the @xpeErimnents
can confound the test results and obscure their implications. 56
distuszes such issues and offers a partial remedy in the form of &
program REVAL that combines the evaluation of a cubic nolynomial
with the simultanecus calculation of a rigorously correct bound
for the effect of roundoff upon that evaluation. "REVAL is bhased
upon prior knowledge of a bound for the rounding error in every
floating-point arithmetic operation; that bound is characteristic
- of the computer and deducible from attributes like the number of
significant digits it carries. REVAL and programs like it parmit
the error in a computed root, regardless of its provenance, to
be overestimated with ease as rigorously as one likes and without
excessive pessimism provided the root lies far enough away from
all the others. Clustered roots are a little harder to handle.

The previous two paragraphs may suggest (and it's widely belisved)
that clustered roots of a cubic cannot be calculated accwately
unless arithmetic is performed. carrying about. three times as many
significant figures as will be assuredly correct in the conmpet e
roots. That is  untrue. Also untrue is another widely belisvad
myth about numerical computation, namely that numerical error i3
caused by cancellation. In fact, on almest all modern compubers,
no new error is generated when subtractive cancellation ocours;
the principal exceptions are CRAYs, CYBERs and UNIVACs. On - TEM
370's, DEC VAX's, SUN's, AFFLE Macintoshes and Hewlett-Fackard
calculators, +o mention just a few, subtractive cancellation i
exact. This fact can be exploited to Preconditien a cubic wifth

L]
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clustered roots,  transforming it into a new cubic with relativealy
well separated roots that are easy to calculate and transform back
into fully accwrate roots of the original equation. & gimplified
version of preconditioning, applicable principally to cubics with
integer coefficients, is described in- &7 with grxamples bthat may
suggest how the process would work in general. Thus have we
confronted two myths about roundoff and cancelled them both.

After roundoff, the second hazard to be overcome during numerical
computation is spurious over/underflow, - an gvent that occurs when
intermediate results would be so huge or so0 tiny as to lie outside
the range of numbers normally representable in the computer aven
though the desired final results lie within range. This hareard is
encountered only rarely, and then it can be overcome by Scalling,
which is described in &8 . : :

The final few sections of these notes are archival. 8% presents
a collection of cubics with known zeros that help to test programs
like QBC or its competitors. - 810 exhibits selected but typical
results obtained from our versions of the Italiansg’ formula and of
Newton's iteration (@EC) programmed into an HP-1ZC  handheld
calculator. The program far GBC is supplied in 811, and the
running times for both methods are compared briefly in 812

2. A Formula in “Closed Form" : ~
A cubic polynomial Ax3 + Bx2 + O + D has three zeras X = Hiy
xa, Xs that can be expressed explicitly in terms of its given

coefficients A, B, £, D in many ways, The formula chosen below

is one of the better ones, and has been arranged in the form of
an algorithm that can easily be programmed into a competer

A, B, C and D are given real numbers.

If A=20 - :
then £ ux = (|B| + |G} + IDIX/A § +ve W or OF0 .
Cop o= =C/2 3 e Next solve Bx2 - 2pn + D =0 ...
g = ¢¥(p2 - BD) 3 ... possibly an imaginary number.
if g is Real ..., 1in which case g 2 @, ...
then { r 2 p + sign(P) § e = P 2 8 saa
if r =0 ' :

then { ... Zeros are O or 0 ar Q/0 . ...
¥y v= D/E H Ha += =M ¥
glge { », = D/r 3 Ha =.F/B 3
else { »y += p/B + g/B § xa2°
plse { b i= ~(B/AY/3 ;3 « '=C/A 3 d = D/A ;
Now solve ®3 — Jbu2 + cx + d = 0 Ve

(IR
Bt

g5 = 3 h? -~ o 3
t = {5 -Db2)b - d ;
aea Now x = b - vy where gy — y3 =1t R
if 8 =0 :
then { yy 1= =tt’/3 : ... the real cube rpoot.
Ya += yy (=1 + I /SE H
alse f u = Jy4s/3) 5 ...  possibly imaginary.
v 1= oarcesin({(3t/s) /W /3 § ... mAay be complex.
W oim (/3 sign(Rel{v)) =~ v § ... = H£0/3 — V ...
Yy s= usin(yv) 3 yz = usiniw } o3
Ky 3= b = yy 3 Ha =B - vz § Hs = ¥y +tyz + D o«

3
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This algorithm was programmed into an HP-15C calculator without
difficulty. On many ancther machine pragramning might be impeded
by the abserce of complex sin and arcsin from its library of
elementary functions. Then the following formualas may helpy

If =z= > 1 then arecsini(z) = (/2 - garccoshllz()) =/ (=l .
I 2 1is real, arcsin{z) = tarcsinhiz} ,

cosiez) = coshlz) , and

sin(zz) =. gaginh{z}) - { ¢z = ¢—1

With the aid of these formulas and some algebraic manipulation,
the algorithm can be freed from all nontrivial complex arithmetic,
but only at the cost of introducing more case analvysis. In place
of the formulas involving complex arcsin and sin, there will
be three cases. One case handles s « O . If s > 0 . (in which
case uw » O too), there are two nore cases according to where
I3t/ (sw) | lies relative to 1 . But multiplying cases can anly
exacerbate the first of three flaws that mar the algorithms

First, the algorithm is complicated, and therefore vulne?able te
oversights., Have all singularities been considered and handled
correctly? : :

Second, the algorithm is vulnerable to over/underflow. Even whan
all three zeros lie well within range, over/underflow can bhlight

the intermediate quantities g, r, 8 and £t . The natural defense

against over/underflow is scaling , another complication.

Third, the algerithm is vulnerable to roundoff, particularly
when the zeros are of wildly different magnitudes;y then the Isros
"of smaller magnitude tend to be computed relatively inaccuratelvy.
(Examples of imnaccuracy can be found at the gnd of these notes.)
All figures can be lost in any zero whose magnitude is smaller
than a rounding error in b . One way to calculate the tiniest
zara more accurately is to obtain it as the reciprocal of the
biggest zero of A+ Bz + Cz2 + Dz3 , which is tantamount &o
running the foregoing algorithm a second time. To compute the
zero of middle magnitude, divide -D/A by the other two Zeros.

Another way to improve the accuracy of a zero is to use soma kind
of iteration that improves approximate zeros by exploiting the
cubic's behavior near them; a short step past this thought finds
us contemplating whether the cubic might be better solved by an
altogether iterative method than by explicit formulas. Just such
an iteration is the next topic discussed in these notes.

3. Newton’s Iteration: :

Biven the real cubic polynomial G(x) = Ax® + Bx® + Cx + D , we

may use iteration Xae:r = Xa = @(Xa) /8" (Xa) For = 0, 1, 2y wea
to find a real zero of G{x) provided we can selve fouwr problems:
~ How shall G(X)/0°(X) . be calculated efficiently?

~ Where iz a good place to choose the starting iterate Xo 7

-~  When should the iteration be stopped?

- Having found one zero, how do we find the other twe?
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The fcllowing scheme computes G&(X) and &' (X) at the cost of
4 multiplications per iteration: :

Qo += AX 3 Qi += g *+ B 3 ‘s = W X + O j

@A'(X) = (o + Q)X + Q2 § B¢X) 1= g2X + D
Thiree preliminary divisions of all the coefficients of &G0 favy
A could subseguently save one multiplication per iteration, but
doing so would exacerbate roundoff and raise guestions about over/
underflow, questions best answersed by scaling all coefficients o
@(x) in advance in a way to be discussed in %8 below.

Finding a good starting iterate Xo is a balancing act among many
rontending considerations.  First comes the numerical stability of
the deflation process by which, after a real zero has been
computed, it will be removed from the cubic to yield a quadratic
whose zeros are the remaining two rerds of the cubic. The process
of deflation is numerically stable unless the zero being removed
is much tinier than one zero of the quadratic but wmuch bigger than
the other. Xo can be chosen to avoid that unstable situation.

A second :unsideratlnn.lﬁ speed,  Newton's iteration converges
very guickly if started close emnough to a simple zero, but
converges very slowly to a multiple zere. Therefore, Xo should
ideally be extremely close to a triple zera, if G(x) has ane,
or 2lse much closer to a simple zero than to & double zero if
@(x) has both of those. Here is a way to choose such an Xo @

Assuming AD # O lat B = —=(B/A)/3 ¢ r = [@D)/AIVS = O
and s = gign(G{)/A) = +1 . If MIA 3 O then Xe .= b - s

‘elesg Xo = b ~ 1.324718 s maxir, Yi=G'(h)/A)} . Why doss this

choice work? The next paragraph will explain. To better follow

its argument, read it repeatedly with reference to the graphs of,
SAY 4 ¥ + gno+ 2 for e = -%, -3, -1, 0, 1 and ¥ superposed

upon each other to show how its leftmost real zero increazes with
g . That leftmost zero is the goal of the iteration.

Why start iterating at Xe 7 Observe that &"(b) = 0 ; therefore
x = h at the inflexion on the graph of &) , and furthermore
B(b=-y) = Q¢h) - @(B)y —~ Ay . IF & (b)/A > O then this cubic

is strictly monotonic with just one real zero vy that must lie
between vy = 0 and y = sr § otherwise the real zero y farthest
from QO lies beyond. y = sr and beyond vy = sy(-Q'(h)/A) tvo,
but not beyond both Asr and Asy(-&'(b)/A) , where x is thes
real root A = 1.32471 79572 447446... of A% = % + 1 .  8Since the
desired real zero X lies between the starting iterate Xeo and
the inflexion peint b, and the cubic is monotone between X and
Xoy Newton's iteratiom converges monotonically and rapidly to the

desired real zeroc. In the special case that Xo = b no further

iteration will occur . becauss then b is the cubic's triple zero.

When should the iteration  Xasr = Xp = QX /70 (Xa) be stopped?
Except when Xe = b , we would expect sign(Xpe: = Xa) =8 Ffor
all n 3 but that expectation cannot persist indefinitely in the
face of roundoff. Ultimately roundoff must cause Xae: = Xn to
vanish or take the wrong sign, or cause & (X,) to vanishi in
gither case we shall set X = X, and accept it as a real zero of
the cubic. Since any iteration could take too long to home in to
X = 0 , which occurs if D = 0 , that case is segregated. And

5
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the gquotient G/ must be replaced by (/R 71,300, .. 001 e
overcompensate for roundoff that could otherwise carry Xn tooO
far beyond its goal. When X is extremely tiny, that gxtra
division prevents X. from jumping over X to ¢, as otherwise
it would in one of the examples in 810 . Roundoff can cause yet
another kind of overshoot when the cubic's three zeros are closely
clustered; X, can fall between two zeros. We avoid the worst
effects of this overshoot by accepting X = X, instead of Xaer -
Owr policies for handling roundoff and stopping the iteration are
not the only possibilities, but they are among the simplest.

With one real zern X in hand, the next task is deviation to
obtain the gquadratic Ax2 + Byx- + L2 whose zeros are the ftwo
remaining zeros of the cubic.  Here ars the deflation formul asi
I |X3] > |D/A1 them € Ca2 = ~D/X 3 By = (C2~037X 7
alse { By = AX+B 3§ Cp = B4X+0C 32
' o v ( recall 1 -and ga above ) ...
One formula for Cz2 comes from the product of the cubic's reros,
~D/8 = X Ca/A . The choice for By, was derived from an error-
analysis that looked at the sum of the zeros, ~B/A = X - Bi/7 4
and at the sum of their reciprocals, ~-C/D = 1/X - By/Ca , to
find out which is lesast perturbed by the error in X . Of course,
different formulas have to be used whaen A=0 or D=0,

Finally, formulas for sclving a gquadratic equétian ara taken from
the algorithm presented earlier.

4. Ilterative Algorithm @BC 2 . . :

The following algorithm, arranged to facilitate programming. ig
complete sxcept for scaling precautions against ovear /undarf 1 ow.

1t is broken into subprocedures that make it easier to understand.

Real Function DISCta, b, ) = b2 - ac 3

... Later, during the discussion of Preconditioning  in 87 ,

.ss another version of "DISC will be presented that is more

... accurate when a, b, ¢ are all integers and not todo big.
End DIBC . : - ' : : '

Procedure @DRTC( A, B, €, Xi*+eYy, Xat+i¥z )i .
ers Biven real coefficients A, B, T , this procedures delivers
e the two zeros X,+iY¥, of the quadratic Ax? +.Bx + 0 .

b = -B/2  ; g = DISC(A, b, C) 3 -

IF q « O .
then ¢ %X, 1= b/8 31 Xa = X1 }
< Yy tm (- /A 3 Yz ==Yy D
else £ Y, =0 31 ¥Ya =0 ;
ror=b o+ signtb)vg 3 ... = b £ VYo .
If r =0 - : '
then « Xy = /A 1 Xz 1= ~X; 2
glse { X, 1= C/r § Xz = /A 3 I 1
C. '

Return § End QDRT
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Procedure EVAL{ X, A, B, C, D, &, &', By, Cy )z
... Given real X and real coefficients A, B, C, D of the
su. ecubic B(x) = Ax® + Bx? + Cx + D , this procedure computes
ve. B moBCX) , & = @(X) 4 By = AX + B and Cz = B, X+ 0 .
Qo = AX § By = Go + B 3 Ca = B4X + 0 3
@ = (C{q""‘Eﬁ)X"‘Cz H 0 1= CaX+D 3 :
Return 3 End EVAL . '

Procedure GBC( A, B, C, D, X, Xi+tz¥y, Xa¥+iE¥Yz ):
... Biven real cosfficients A, B, C, D of the cubic
v.. AXS + Bu2 + Cx + D , this procedure computes a real zero X
ven and two complex zeros X,+iY, of the cubic.
‘ TFf A =0 then ¢ X =@ ;3 A =B 3 by i=C 35 e=2 =D ;
c g to- Fin 3}
If D=0 them { X = O 3 by =58
' - go to fin 3 %
-(B/A /3 3 ‘call EVAL(X, A,B,C
g/& 3 r =3yt oy s o= signit) i aaw = 41
~g'/8 3 iF t > 0 then r I= 1.I24718maxlr, vii i
o 1= X = @~ 3 if xe = X then go to Fin
o € X t= %e 3§ call EVAL(X, A,B,C,D, g, a’s Bey C2) 3
if q =0 then xe = X
else Xo 1= X — (Q/g")/1.000..001 F
wuntil SXe L .8X ¢ ... stop when o ¥ X .
I+ JAIX2 > {D/X| _ _ :
théen £ ca = =-D/X 3. by = (ca—-0C)/X I3
fin: call GDRTC( A, by, €z, Xi+t¥i, Xa+i¥z 2 3
Return 3 End RABC « ' .

D, g, 'y By T2/ 1'{-
+

™

»
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5. Accuracys :

A rigorous assessmnent of the effects of roundofs upon GBC would
be too complicated to include in these notes, but the conclusions
from such an assessment will be stated here,  followed later in

§&6 ("Testing Considerations") and 8§87 ("Preconditioning”? by
some suggestions about what can be done aboutrthase(effectﬁ.

Provided over/underflow does not intrude, GBC's combination of
iteration and deflation always produces results scarcely worsa
than if the cubic’'s coefficients had each been perturbed by a few
rounding errors at the start. In the worst case, when tha threse
zeros of the cubic are all relatively nearly coincident, they may
be correct to as few as a third of the figures carried; such a
loss of accuracy also may afflict the closed form formula in that
case. The phenomenon is illustrated by the following example:

Consider the cubic X3 - 3x2 + 3x - (1-g) , where 1-& is the
number next less than 1 representable in the floating-point
format used during computation. The zeros of this cubic ares the

three values of 1 - g'/3 . For instance, if 12 sig. dec. are
carried during computation, l-g = 00,9999 9% 9999 and the raal
caro 1 - £'/% = 0.999% ., Changing the coefficient 1~z in its

12" sig. dec. to 1 changes all three zeros in the 4" fo 1 .

In other examples, with two nearly coincident zeros relatively
far from the third, about half the figures carried can be lost

.7
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regardless of how the cubic is molved. But BGBC never loses all
the figures carried, as the closed-form formulas can. Examples
to show what can happen will be.presented_later. MHere is &

summary of the conclusions that can be drawn from error analysis:

Each zero Z computed by GBC's combination of iteration and

deflation is accurate almost to whichever is the largest of ...

- as many figures as were carried less the sum of the numbers of
figures to which the other two reros agree with 72, oF

- half of the excess of the number of figures carried aver the
number of figures of agreement between 7 , one of A pair
of coincident or nearly coincident zeros, and a third zero
retlatively different from the pair, OF ...

~ a third of the figures carried, if &all three zerps are
coincident ar nearly coincident with 7 .

Ney way is known to calculate the zeros of a cubic more acourately
than if its coefficients had first been perturbsed by roundoff,
unless part of the calculation is performed exactly == with no
roundoff at all. That sxact calculation is part of a process
called "PFreconditioning*, which will be described later in &7 .

4. Testing Considerations: ; '

The obvious way to test ORC is to supply it with arguments for
which accurate results have been calculated by some other method,
and then compare. On reflection, this test procedure is not so
obvious. What other method will give accurate results? Qubics
can be constructed with small integer coefficients and at least
one zero expressible as a ratio of small integers; but small
integer input data might fail to stimulate typical rounding
errors. And if results differ from what might ideally have been
expected, how does one decide whether the differences are
tolerable consequences-of umavoidable rounding errors, oOF
symptoms of a defect in the program that must be repaired?

A simple procedure that seems at first fres from the dilemmas is
to reconstruct the cubic from its computed zeros X, Yy Z DY
expanding A(x=-X) {(x=-Y) (x~=Z) - in powers of 'x . . If the cublic so
reconstructed matches the given cubic well . enough, the program
‘that computed the zeros cannot be too wrong. But how well is
nwell enough” ? Presumably the raconstruction need match no mora
accurately than if X, Y and Z were correct zeros @ach rounded
0ff to working precision (though actually they might be far less
accurate than that); and the rounding errors that acerue during
+the reconstruction process have to be allowed for tco. It's not
so simple after all.

Program testing is fraught with anxiety unless one can agtimate
mathematically how big the errors should not be., Such an ostimate
of uncertainty can be very difficulty I would much rather have to
write a program than have to analyze ity errors o test it.

The program REVAL. below computes a rigorous and +airly sharp
bound A  for the contribution of roundoff to the computed value
o of a cubic @(z) = Az3 +Bz? +Cz +D at the same time as it

computes # . REVAL requires knowledge about bounds for evary

8



Cubic2 : WORK IN FROGRESS . Nov. B8, 1986

Founding arvror comni bted by the computer in response to statements
like "5 t=oxty 3ood otm -y 3R o= ouwy 3 in a program.
These asQLQnments gtore in tha computar’'s memory values S, i and
p slightly different from the ideal sum, diffarence and product
desired. Almost every modern computer’'s arithmetic has its own
characteristic tiny constants ¢ and 8 that satisfy

s — (#+yd)] & 8ls! , jd = {u—y)3 | = Bidl -, fp — n#y | o &Ryl
for all non-pathological values x and y representable in the
computer ( ignore and over/underflow for now ) . Tdeally

8 = g = (1,000,.,.001 - 1.000,,,.,000)3/2

but some computer arithmetics are somewhat worse, and many suffer
larger valoues af g Fmr cnmple multiplicatiun than for real.

- To apply the foregoing inequalities to thp arror analysis. of any
pragram that computes & , first decompose the program into &
sequence of sinple assignments like

Qo += A%¥Z § = e+ B § .vae-3 Qs += Qa¥z § @ = gz + D L
Then replace them by the inequalities they actually satisfy: ‘

Ige — Azl < €lAzl § 1gs = (Qo+BI [ -5 8[ayd §  .us

ver 5 lOs - qazi 4 &lqaz] 3 &~ A(qs+ D] L &Rl .
These several inequalities bail down to one of the farm
@ ~ Az + Bz +Cz+D){  + A

wherein A is expressed in terms of 2 and &  and various
computed values. Hence, A can be computed too thus:

Procedurea REVAL( Z, A, B, C, D, ¥ P 33
o Biven real coefficients A, B, C, D , this procedure vi=lds
«ae  an approximation @ to 8(2) = AZI3+RBI2Z+ LI +D and a
wes bound A X f@-R(D)I , which would be zera if no roundofs
wes ocourred. ‘Instead, constants & and = that reflect the
vee Computer's roundoff must be put into the program. A bigaes
vae & may be needed for complex arithmetic than fur Feal.
e = |Ale/(g+8)
gy s=AZ +B &
Qa += quZ +C°
@ = Q= +«D
Return 3§ End REVAL .

=2l e v g
:“ IZI_ @ + [gal i ‘
e (g+8) [ Zle + (48 g

+
I

e
e_,
faY

A -an

How might REVAL be tested? After proving that no computed value
of @ can differ from an accurate evaluation of G(Z) by more in
magnitude than A , we have to show also that the error bound &
is not so pessimistic as to be useless. Among large collections
of trial data, A should sametimes barely exceed |& — G(D)| j
the only way to verify this is to compute GE(Z) more accurately,

This procedure REVAL can serve to test the quality of Z as an
approximate zero of the cubici; compute the quotient (2174 . A
quotient no bigger than 2 , say, indicates that no substantial
improvement in the accuracy of Z is likely to be achieved unless
“arithmetic is carried out to higher precision. 0OFf course, if you
helisve OBRC works correctly you must believe that (@174 will
he fairly small at every computed zero, in which case you'll not
bother to compute that guotient. But REVAL has another use.
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A bound upon the error in any approxlmate ﬁaro Z can be derived
from REVAL's bound A > [@-8(2Z)}] , amonyg other things, no
matter what the provenance of 2 . I+ Z is accurate enough, ons
step of Newton's iteration from 2 to 2.~ BRI nearliy
doubles its number of correct digits, in which case. @(2)/0°(1)
must approximate the error in I fairly ciosely. That guotient
is never much smaller than the error because, in genaral , G(z2)
must have a (possibly complex) .zero z no farther from Z  than
Ii@(Zy /002y 4, according to a theorem of Laguerre. REVAL' s
[@]+A overestimates - [&(Z)] 3 and an estimate of & (I) comes
either fromn AZ2 + g, Z + 02 «+ a8 in EVAL, or from A{ZI-X)(Z-Y)
where X and Y approximate the other two zeros of the cubiec. One
way or another, Clai+A) /1B (2) | provides at least a rough bound
for the error . in I . :

A rigorous error bound derived from  laguerre’'s theorem requires
a rigorous lower bound for [Q(2Z)| , which could be obtained

from an augmented version of REVAL - that accounted for roundaffs

»

contribution to & (Z) as well &s to_ InJrQ Ry Alternatively, if
approvuimate zeros X, Y, Z are in hand, three calls to  REVAL
would help overestimate the right-hand sides of the inequalities

fr=X| < JIQXYI/TAX~Y) (X- Z)1

fy=Y1. IIRCYY 17 1AY~Z23 (Y-X) | antd

lg=Z| T2y A1 ACZ-X2 {Z2-Y) ] _
which rigorously bound the true zeros x, ¥, ¢ oOf @ unless thay
are clustered so closely that these three estimates overlap. But
rigorous baunds differ significantly from the previous paragraph’s
rough bounds only when zeros are clustered, and then time spent
" 'to get rigaorous but probably dismal bounds might be better spent
cmmputlng more accurate zeros with the ald of PFEFDHdItlDHiﬁQn

4
S

7. Preconditionings : &

Since erroar bounds are -so often pessxmstlc11 one might suspech
that error analysts are pessimists too. Actually, error analyshbs
are less interested in over-estimating error than in diminishing
it. One way to diminish roundoff error is . preconditioning, a
process that transforms a problem hypersensitive to roundoff into
a problem that is similar bhut far less sensitive. :

The simplest 111ustrat10n af the process concerns a gquadiatic
equatlon in the form

ax? -~ 2by + = .0 ,
a form mare convenient for our purpose than the usual foarm
Ax® + By + £ = 0 £ o wh;ch we get the desired form by setting
a := -2, b =B and c = -ZC. This eqguation is hypersensitive
to rounding errors and also tm any other perturbations of. its
cosfficients just when its roots ares relatively nearly coincident
in which case computed roots can be inaccurate in almost half Fhe

figures carrisd. For instance, when a = 100002 , b = 100041
and c = 100000 , the true roots x = 1 and x = 0,.9999800004..,.
differ in their Str digits from the double root x = Q.9999P00002

computed on & 10-~digit calculator using the familiar formula
¥ = (b + ¢y{bF-ac))/ia i
but the ccmputed roots are Just what would have beesn obtained in
enact arithmetic had the coefficients b and ¢ first been altered
in digits beyond their 10t tp b = 100001,00000 00004 and

1Q
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o= 100000, 00001 0005 FIVTE Q0008 . Buch tiny perturbations are
pnough to cause relatively serious errors in yib2-ac) , errors
avoidable only by carrying in worst cases twice as many gig. dec.
in owr computations and honoring twice as many sig. dec. in the
coefficients as we wish to guarantee correct in computed roots.

When are the coefficients likely to be known so accurately? Most
likely when they are known exactly, and then most likely whan
they are integers. Therefore, let us consider the case when a ,
b and ¢ are all integers and, to simplify the exposition, let
us assume that they are representable exactly in floating-point
with a digit to spare. This means integers with no more than 7
digits on a 10-digit calculator, no more than 23 bits on a
computer that performs binary floating-point with 24 sig. bits.
14 the coefficients were rather smaller than that, so small that
the products b? and ac were both representable exactly, then
the discriminant g = b?-ac  would be fully accurate enough to.
produce entirely satisfactory results from a program like RADRTC
above., That state of affairs is the goal of the preconditioning
function DISC presented below. Without changing g = b?-ac

it successively diminishes the integers a, b, ¢ wuntil sither ac
is negative or it differs enough frowm b? that DISC = b* - aAc
can be cumputad contaminated only relatlvely slightly by roundoff.

Real Function 'DISC(a, b, £): : :

... Biven integers a , b , ¢ all small enough to fit exactly
vae into floating-point with at least a digit to spare, return
~nx DISC = b2 - ac with roundoff can¥1ned tm its last sig. dec,
: I+ ac > 0 then

{ a = lal ¢ e = |Jci ¥

toop: if a + £ then swapla, €) § »»a ROW O 0 o £ & .

n = integer nearest bic 3 .. in=-b/icl <« 1/£

if n # ¢ then wew C elusg b? 4 /4 < ac/d )

{ ®mi=a-nb i3 .o exact if o > —a
if ® »—=a then ... { glse Zb2 > Jac )
{ b i=Db —-—nc; san b} € e/2
A = x -nb 3

- if a > 0. then go to leop 3 ¥ ¥ j
Return DISC = b? -~ & c End DISC .

]

After substituting this preconditioning function DISC for the
function DISC that accompanies the procedure GDRTC above, we
can compute the desired roots Xg+1¥; of our quadratic to nearly
fuwll accuracy by calling GDRTC¢C a, —2b, o, X+, Xatt¥a )

When applied to ouwr example above, DISC(100002, 1QO00L1, 100000)
finds n = 1 and reduces a , b , © successively to

% = 100002 ~ 100001 =1 , b = 100001 -~ 100000 =1 , a=1~1=20Q
and then returns DISC = 1| correctly having exploited. massive
Ccancellation without error, Here are some more examples:

i1
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a b . ¢ . grude DISC = refined DIGC true b%-ac
3234424085 1160927837 4146690270 398000000000 377448345600 377448343619
3234413351 1160928203 416690636 . ~B9000000000  -B90460331630  -B9060331627

8952751441 1557623 271 0 _ 114 114
8952751442 18557625 271 0 =157 -137
5309162499 2301700899 997864924 - -8000000000 ~-51108764875  -511087687%
5309162499 2301700899 997844923 6 198285624 198283624
5309142499 2301700899 997844922 . §000000000 9507448123 8507448123

All caolumns but the last were obtained from versions of DISC programmed into
the HP-15C, a ten-figure calculater. The last column comes from the HP-71R,
a twelve-figure machine; - using a faster version of DISC that exploits the
INEXACT flag oprovided by IEEE standard p834, to which the HP-71B contorms:
DEF FNg{a,b,c) ! .. § 3% b*2 - a%c more accurately. (in BASIC)
= FLAG{INX,0) - ' ,,, saves and resats INEXACT flag.
*loop't b0 = h¥b @ a0 = a¥c ! ... Are they exact?
IF FLAG(INX,i0)=0 OR a0<{=0 THEN G&OTO "fin’ _
IF ABS(c)>ABS{a) THEN a0=a @ a=c 8 c=ad ! ... swap(a,c)
. b0 = REB{b;e) @ n = IRUUND((D -§03/e) ! ... RED is IEEE rem
it = FLAB(INX,0) ! ... ressts INEXACT flag. '
a0 = (a -~ a*h) - n*b0. _
IF FLAB(INX})=0 THEN a = a0 @ b = b0 @ GOTD "loop’
‘fin': FNq = h#b - a*c @ END DEF :

An idea similar to that in DISBC , but applxed very leFarantly,
serves to precondition the cubic eguation
qix) 3= axs - 3bx? + Jcx -~ d o= O
when all its coefficients except perhaps d are integers
representable exactly in flpating-point with at least a digit or
two to spare. GBC will caleulate the equation's roots but, in
the light of error analyses mentioned above, we must expect the
ralculated roots to suffer badly from roundoff whenever they are
clustered. Fortunately that possibility, clustered roots, can
be recognized easily without any call upon QBC 3 if all three
roots are nearly coincident then. all three guotients b/a, c/b and
d/c must be nearly ceincident too. In fact, a little algebraic
manipulation suffices to prove that the guotients match to beyond
twice as many sig. dlg1ts ag are common to the roots. To exploit
this phenomenon, choose X to approximate all three muotients
rounded to no more sig. digits than are left wnoccupied by the
first three coefficients; this means that all three produckts Aa,
Ab and Ao will be computed exactly in floating-point arithmetic,
Next replace x by a+y in the given equation to get a new CUblL
gir+y). = ay® - 3by2 + Te'y - d* o= O

which {BC can solve for roots. y , whence x & x+y ;  much mors
accurately than before. New cosfficients must be calculated thus:

d’” = d —- A H c' i= c - Ab 3 b' = b - xa i

d?® ;= d' - A" 3 gt =g - oAb’ g

d. .= d. - ?\C' -
Cancellation will occur in the first row without error; and if
rounding errors do occcur later they will be far tinier than what
OBC would likely inflict upon the original coefficients. When
all three roots x» are extremely close, $o close that all three

12
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roots v must be relatively nearly coincident too, no rounding
arrors will occur during the calculation of the new coefficients
b’y c' and d*, and then the foregoing transformation may be
repeated advantageously with a new tinier A . .

Whan two roots are nearly coincident but relatively far fram tha
third, the three guotients above must be replaced by twn values
(/) {be — ad) /(b2 - ac) and +Y{ (2 = bd) 7 {(b% ~ac) ) .

They can be shown to match to about twice as many sig. digits as
are in agreement between the two nearly coincident rootsy and A
must approximate those two values rounded to at most half as many
digits as are left unoccupied by the first three coefficients, so
that all three products A2a,. A2b and ac will be computed exactly
in flopating-point arithmetic. Then the new coefficients and the
roots ¥ = A+y may be calculated as above except when d turns
out to be small compared with ax3® . In that special case, the
third root will be rather smaller than the two that are nearly
coincident, so0 it may well be computed more accurately from the
original coefficients than from the new ones. Maoreover, in cCase
d is small and not an integer, the formulas for d, d* and d*

should be changed as follows fnr better accwracy in the nearly
coincident roots A+y 3 _
D = integer nearest o 3 & = d~-D i
d’ = D=2Ac y d" = d —ac’ 3 d* o= {d'— At} +E .

A detailed explamation to justify the foregoing procedures is tono
complicated to include in these notes. Instead, a few examples
will illustrate the schemes' efficacy.

o - it e s it e f20

These examples were all worked out on an HP-15C calculator, which carries 10
sig, dec. First the zerps « of 2ach given cubic g(x}] were abtained from a.
program Iike @BC , listed at the end of these notes, to see haw inaccurately
it computes clustered zeros, Then quotients of coefficients were examined to
determine a choice of A from which new coefficients of gix+y} were derived.
The intermediate results of this computatian are displayed below with strings
of leading *o's" to denote digits that cancelled off. Then {BC .was rerun
to compute the zeros y of  gia+y) , +From which were obtained improved zeras
% = Aty whase correctness was verified on an HP~71B carrying 12 sig.dec.

B{x) = 438x3 « 190125x? + 18311811x - 587898144
BBC: % = 946.297 | 946.341 ,  96.305 : ‘
946.31458%47  c©/b = 96.31438777 d/c .= 76.31438382 Ao 9403

bla =
= 438 b = 63375 £ = 5103937 -4 = 5878949144
b = oooo%.6 ¢ = oooo?24.5 d° = noooo89030.9
S ogob.02 d" = ooool .53
: : g% = -0.374
B{x+y) = 43ByS - 28.8y® + 0. Oéy + 0, 376

BBC: a+y = 94.22943935, 96.33706483 + 0. 04974975204 ¢
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Bk} = 2212111x3 - 73449%x2 + 813x ~ 3
BBC: % = 0.01109492865 , 0.01105309967 + 0.0002005029487 ¢
b/a = 0.0110677 /b = 0.0110689  d/tc = 0.0110701 A 1= 0.0111

= 2212111 b = 28483 e = 271 d = 3
' = -goo7!.4321 ¢’ = -pgo.7413 d' = =ng.q008i
: c" = 0. 33!59571 d" = 0.00a33043
d* = =0.000000289041

Birey) = 2Z212111yS + 214, Z?boyz + Q. 094?88?3y + 0,.000000289041
@BL: a+y = 0, 011096?300& s 0.01105309791 £ 0.0002009934814 ¢

3 is not critical, nor is a small rounding error in - d* . Here is the
previous example repeated with a different. A = 0.01107 3
a = 221211t b = 24483 - c = 271 d =3
b’ = -00005.06877 - ¢' = ~g00.02681 . d' = 0.00003
.ot o= 0 0293012839 d* = 0.0003247847
- - : : o d* = §.0000024214872.. -
Yet @BC delivers practically the same f1na1 results »+ty  as . before.
Bix) = &HLI1x3 ~ S1792x2 + {09737x + 0.00423
BRC: % = -5.677209907,0~8 , 4.237477394 , A 2ITFII10§
(bc-ad)/{2{b?~ac)) = ¢ (c2-hd)/(b2~-ac} } = 4.2375043479 » o= 4,24
= 61l b= 17264 c = 34579 D = 0 £ =4 = ~-0,004823
b = ~0Bb44.564 ¢ = -34820.36  d° = -1350%94.96
c* = oan41.3936 d" = o0001735,3644
_ de =

‘ : -poa, 148474
Bixey) = Ailly™® 4+ 25?39 92y2 4124, lBoay + 0.148474 ‘
28C1 A+y = -g.000000054 , 4.237383786., 4.237424911
d. is sa tiny that the 1sa1ated raot is hest calculated directly from R{x).

i i ) A 34 S S S48, RO PR XA S0 o i e v e e Vb i = P v - bt s it S A AL MeLLE P 1 AR P S0 i oo e

The foregoing discussion may promote a misleading impression. Lthat
preconditioning is worth while only if the data (cosfficients) are
given exactly. Other circumstances deo exist when preconditioning
helps, however. For example, . the errors in the data could be
correlated in a way that is known to mostly camcel in the results.
Or the coefficients, though uncorrelatedly erroneous, may figure
subsequently in several related contexts among which consistency
of some kind is essential even though ultimate accuracy is not.
For instance, suppose a program uses the zeros of the cubic and
also of its derivative; Rolle's theorem implies that the latter
zeros should lie between the farmer when they are all real, and a
theorem due to Gauss places the latter inside the convex hull of
the former when they are complex. IFf those relationships are
violated by clustered approximate zeros computed too inacourately,
the subsequent logic of the program could malfunction. Adapting
that logic to disordered zeros can be far more complicated than
preconditioning in a way that protects. their order from roundoff.
Howsver, preconditioning procedures appropriate for nan1n+a;er
data go far beyond the scope of these notes.
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8. Scaling Invariance vs. Over/Underflow:
The factored form of the cubic

ARS + Bu2 + Cx + D = A = X) {x - ¥ (x - 22
provides a factoriration for tha scaled cubic
(rAI K3 + (oBpIn2 + (¢Ce2Ix + (¢Dg3) = oA (X ~gX) &~ oY) Ui ~pZ)
If the scale factors o« and ¢ are powers of the radix (10 for
a decimal calculator, 2 for a binary computer), then the scaled

coefficients oA, «Bp, ¢Co2, oDp® will have the same significant
digits as the original coefficients @&, B, C, D 3 only the
decimal or binary points will have shifted. Therefore the same
should be true of the scaled zeros X, oY, ¢Z , =aven in the face
of roundoff. OFf course, the relationship between the scaled
zeros and the original zeros X, Y, Z must break down when the
scale factors are so big or so tiny that the scaled coefficients
or zeros over/underflow; ideally the relationship should not
break down for any other reason. In practice, most algorithns
are vulnerable to spurious over/underflow. For instance, the
discriminant g in @DRTC and the guotients r and t in GBC -
can easily aver/underflow sven though the coefficients and. zeros
lie well within range. Conscisntious programmers introduce scale
factors into their programs sither to forestall undeserved over/
underflows or to recover from them. The task is not eased by the
absence from most. programming languages of any reference to ovar/
underflow other than an implication that the crime will be
punished by tarmxnat1on of the program g execution.

Here is how a scale factor ¢ can be chosen to prnvent SPUFL OIS
over /under{low dur1ng the salut1on of a quadratic eguation

A2 + By +. C = O If. A= 0 or C =10, the solution is obvious.
Dtherwise chooBe o« to be a power of  the radix near YIial Vit
and 30 chosen that neither A/¢ nor C/s can aover/underflow. Thean

[{A/e) (C/w) | cannot be orders of magnituda larger or smaller than
1 . Next compare [IBl with ¢« 3 if {Bi is so much biggsr fhan
s that |[B|l +v rounds to Rl , then the guadratic’'s roots are

approximated accurately enough by -C/B and -B/A . (Otherwise
call GDRTC(A/wvy, B/ovy, Cl/oy Xy + 2¥yy Xa + t¥3) , allowing '
underflows to flush to © if nothing better is available. NMNMa

undeserved overflow will occur,

Similar ideas can help suppress spurious over/underflows whan
solving the cubic. Roughly speaking, when A/B is very tiny,
much tinier thamn roundoff in numbers near 1, but E/C is not
tiny at all, then the cubic’'s biggest zere must be very nearly
-B/A& , and the other zeros can be found by setting A = 0 and
solving the resulting quadratic equation. And when D/C is very
tiny but C/B is not, the tiniest zeroc is very nearly -D/C ,
and s0 on. When neither A/B nor D/C is very tiny, the cubic
and its zeros can be scaled and computed in the ordinary way.
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%. Some Trial Data for Cubic Equation Salverss

Motation:
Coefficients A, B, C, D of cubic Ax3 +Bx2 +(Cx +D are input.
Output are real zeros X, Z:, Lz Or complex zZeros Z .
Parameters: M is a small integer; N is a big integer: uwsually
IN} is almost as big as possible without roundoff.
u os= M/N 3 v o= 1/7(2N) .
t is a tiny number: 1000 + t rounds to 1000 .
h is a huge numbery h + 1 rounds to h .

Follow the forsulas for coefficients EXACTLY; . rounding them could change zeras drastically.

Cubics with small integer coefficients: B ‘

A=1, B=D=-~, C=11. X=3, Zi=1, Iz2%2 .
A=D=1, B=C=90, X=-1, Z= 0.5+ 1¥0,73
A=-D=1, B=C=0., X= 1, Z=~0.8+ 1#/0.75 . o
A=60, B=1, C=23%, D=2. X =0 5 Zy= =1, Za= -2 .
A=1, B=-3, C=2, D=0. X=0, Z, =1, iz = 2 .
A=D=1, B=C=3 . X=1ZI,=1I=-1.

A= =B = -0 wD=1. X==1 , Zy=1Lda=1 . '

A=1, B=-30 C=299, D=-~1980 . X =20 , I =3 + ¥74 .

Cubics with zeros of very different magnitudes: P

A=1, B=-30, C=299, D=-t . X % /299 , Z % 15 + /74 ..
A=-D=t%t, -B=£=h. X=1, Z,#%t/h , Iz % h/t .
A=1, B=«-h, C=-t., D=ht. X =h , I = +yt .
A=D=1, B=C=1~N=~-1/N. X =1/M., Zy=-1,; 22 =N .

Cubiecs with ill-conditioned zeros: ) :

A=~C =N+l , D=~B=N-1. =X=12Zy =1, Za=1~ 2/7(N+t} .
A=-D=N, C==B=7>3N+2M . X =1, Z = 1+ + V{Zu+ru® .
A=E=3C, C = 9N%, D= {—-N¥% . X = (I—_v)/h s L omolev o4+ ovys
A=D= N2+MZ, B=C= IM2-N2, X=—1, Z = 1-2u2/(1+u?) + 2/ (1+u2).
A=—-D=N2+M2, ~B=(=3N2-M2 . X=f, Z = {-RuI/(1+u?) + ﬂzuf(l+u=} .

10. Selected Results from the HP*!SC : .

Both algorithss above, ome using the Formuia with compiex arcsin, one lxke 08 that iterates to
solve a cubic, have been prograased into the HP-15C calculator aleng with a grogram like REVAL to
cospute (¢} and & .. The results tabuiated below show the coefficients A, B, C, D of the cubic B{x}
and the zeros X, Y, I abtained first from the programmed Forsula, second from exact caiculation on
another machine, third frow the iterative method RBC. Below 0BL's results are shown correspanding
quotients 1G(XH7AIK), |1 1/MY), 1@{IH/A(Z) as computed by a grograw like REVAL .

The HP-i5C rounds arithsetic to 10 sig. dec.; corresponding to 4 = & = Je-10.

A=l Farssla X'=1 Y=12 i=3
B=-b Correct ¥ = | Ys2 1=3
C=1il Iter've [ =1 Y=2 1=13
I=-b Q174 ) ] 0
A=~ Formula ¥ =-1 Y = 0,4999999999 + 0,B640254037 ¢
B=40 Correct X = -1 Y=0.5 ¢ 0,864025405784 ¢

C=0 lter'va X =-I Y =03 + 0,8660234038 :

D=-f 0

fat/4 0
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A= Formula £=-1 = = I

3=3 forrect {=-1 = ¥ = 1

€=3 fter've X=-1 = ¥ = [ _

b=i 1a1/4 0 aso 4 50 the programs work at least sometinmes.

=1 Formula ¥ = 2.094551481 Y = -1,047275741 + 1.13593988% ¢ ... Newton's

B=10 Correct X = 2.0945514815 - ¥ = -1,0472737408 + 1.1359378891 : oW

C=-2 Tter've § =2,094350491 Y = -1,04727578#f + 1.133%37B8% 1 axample.

b=-5 {a1/4 0.27 0.13

A=1 Formula X .= 4e-10 Y=t 1=2 ... & is osinous.

B=-3 Corract ¥ =10 Y=1 =2 '

t=2 Iter've £=0 Y=t 1:=2

k=10 [21/4 0 0 0

h={ Formula X = 4e-10 f=1 122 oo I igwrorg. .. ‘
B=-3 Correct X =-0,17e-89 = Y=1 I=2  This is why HQBC has
L=12 ' Iter've %= -1.17e-89° Y=t S 1=2 1. 1,000,000 dn it
b= 2,34e-89 ja1/4 9 3, 4e-81 2.9e-81 :
A= Foraula X = 7999999998 ¥Y=43545 - 1=-4354F ... Yand I are very wrong.
B'= -7999999999 Correct X = BOGOOGO000 = Y= 1. 1= -2

£ = -8000000002 {ter've X = 8000000000 Y= 1 1= <2

B = 16000000000 /s 0 0 0

A = 16006000000 Forsela £ = {,0e-i0 ¥ = (0,9999999999 1 = =0,4999999999 ... Yand I are . K
B = -2000000002  Corrmct X = 1.25e-10 Y= 1 ' Cls-0.§ aow, but X idsn't,
¢ = -7999999999  Tter've X=1.28e-10 Y= { . L1208 This cubic is the
D=1 17 S 0 ' 0.!- : previgus one reversed.
A= Faraula X = 99999.99997 = -1,0843 I=0,04433 ... Y and I are wrong again,
B = -99999.00001  Correct X = 100009 Y=~ 7 = 0.00001 and reversing the cubic
C = -9999%,0000f Iter've X =100000 - Y=~ 1 = 000001 won't improve Y .

p=1 _ 14/ 0 o 0.1 6 - ‘

&= 5,01 Forsula X = 1.0le~4 - Ze-4 ¢ Y = {4999,99995 + 8502, J2519} ¢

B=-300 Correct X = 1,00000001003e-4 Y = 14999,99995 + 8602,32517986 «

€ = 2990000 Iter've £ = 1,000000010e-4 ¥ =2 1499999995 + B402.32518 ¢

D=-199 {Q1/4 0 ~ 0.00083

The Forsula’s value X {s wrong in the worst way: wrong enough to mattar, but not abviously wrong.
A=-3 Formsla ‘% = 0333333333 = ¥ = [ :

B=3 Correct X = 0.333178613706 Y = 0,333410693147 + 0.000133991128129 ¢

C=- Tter've X =0, 3333333333' Y = 0.3333360667 I = 0,33333

b= Gttt iRi/a 0 0 g

Batter results capnat be expected from calculations carried out to 10 sig. dec., since as many as two
thirds of the figures carried can be lost if all three 2eros are nearly coincident.

A = 10000000000 Farmula X = -0.9999999997 ¥ = (.999999999% + 0.00001721325932 :

B = -9999999994 Correct £ = -1 Y=1 T = 0.99999999%90
C=-A Iter've X =-1 Y = 1.000014142 1 = 0,999985838
b=-B 121/4 0,057 0,27 - ¢

Batter rasults cannot be expected from calculations carried aut to 10 sig, dec., since as many as half

the figures carried can be lost if two zeras are nearly coincident but far from the third. Note that any
progras that cosputes X, Y, I as well as can be expected should produce values for {2i/4 smaller than
1 or 2, but the saallness of that quotient does not by itself tell how accurate a computed zero may be.
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ii. A Program for the HP-130: .

This program deals with cubics @¢x) = ax® + bx2 .+ cx + d and
quadratics rx2 + sx + t . Function keys [AJ, [B1, [C1, [DI, {Ed
and [£11 are invoked via [BSR] Al etc. Stack register X is
normally displayed; . to see the other registers Y, Z and T , use
the [RYI, [RT] or [X2Y1 keys. Here is what the program does:

CAl: a CENTER] b [ENTERI « LENTERI d [Al st&res a, b, ©, d
in cells #3, #4, #3, #4&  reap. Ffor ...
EBls Using coefficients a, b, c, d stored by [A]l , solves

Qx> = O  for rookts X, ¥, & by means of a
formula involving complex arcsin. Scratchas
cells #7, #8, #9 . :

LE]: Using coefficients a, b, c, d stored by [AY , solves

R{x) = O for roots X, ¥, Z as BGBC doss by

iteration and deflation. X is real and also
in cell #9 3 ¥ and £ are complex-—
conjugates. Scratches cells #7 and #8 .

o Using coefficients a, b, €, d stored by L[Al , copies
¥ intod Z and T , writes [X]| into cell #7,
writes G(X) over X and an error bound for
(XY onto ¥ . X may be complex, OCf. REVAL.

£17: Using coefficients a, b, ¢, d stored by [Al , writes

' X :imto & .and T , @ ¢(Xxy dinto ¥ and RX)
over X 3 and if X was real, then leaves

. - aX+b in cell #7 ,  (aX+b)X+c. in #B .

LDl - r CENTER] s [ENTERI t L[DI] solves a guadratic equation
rx2 + gx + t = O for its roots X and ¥ -,
which may be complex. r # 0 . OCf. GDRTC.

Program Text: ' e '
LBLLAJ 5706 Ry STOS Ry STM Ry 5703 RTN LBLLB] [F8 RCL4 RCL3 X"ﬂ" BT09 + 3. CHS * 5707 %= 8704 3 « RLLS
ACL33 -~ §T09 RCL-B RCLx7 RCL& RCLIZ - RCLY ¥=07 G700 + 3 x RCLY .75 + 5F8 #X + L&TX X2Y SIN-* 3 & CFD X<07 8FO
& 3 % FO7 CHS XZY - LSTY SIN Rf:x X2Y SIN Rt ¢ 6T02 LBLO f2Y CHS 3 1/X SFB Y* ENTER ENTER | (H5 LSTX ¥ CHS
X LBL2 RACL7 X2Y - RCL7 LSTX Rt + RCL+7 X2Y LSTY - RTN LBL I ABS 5707 4,004 STOI LSTX RCLY EMTER ABS 2
$ L.BLT RCLx7 R¥ x RCL#(i} ENTER ABS Rt + 1961 GTO3 LSTX + 2 EEX % # X2Y RTN LBL.ED3J CFG X2Y 2 CHS + CF0
1¢0? SFO0 STOT X2 Ry x LSTX X2Y R$ - CHS X307 8TD4 CHS #X R®  ENTER CHS RCLI LSTX + X2Y fI ENTER Rt fI RN
LBL4 yX F0? CHS RCL+I X=07 RTN # LSTY Rt ¢+ RTN LBL.LETJ CF8 EEX CHS 9 e STOY RCLG X=07 8704 RCL4 RCLI
¥=07 G709 ¢ 3 CHS + 55B1 RCL#3 CFO X<07 5FQ ABS 3 /X Y* X2Y RCL:3 CHS X{0? GTOT ¢X XDY? X2¥ CLX 1.323 ¢ ENTER
LBLS (LY + FO? CHS - X=Y? G707 L.BL & GBBI X2Y X=07 5707 + RCL#9 - X=Y? GTO7 LSTX FO? CHS X)07 GTO7 RY 6T04
LBLL 11 ENTER ENTER RCLx3 ENTER. RCL+4 STO7-+ x X2Y RCLx7 RCL+5 STDB + X2Y LSTX x RCL+6 RN LBL.7 Ry RY
ST09 ¥=07 G708 X2 RCLx3 ABS RCLé RCL$9 ABS X)Y? 5708 LSTY CHS STOB RCL-3 RCL+9 5707 L.BL.8 RCLI RCLY RCLB 6705
LBLZ { TANH-* ST09 RCL4 RELS RCL4 LBL.S 658D RCL? RTN ( 303 staps )

12. Program Timings:2 :

For the selected results from the HP-15C exhibited above, the
closed-form formula program (B]1 took about 14 sec. on average;
the iterative ORC program [E]1 averaged roughly 27 sec. Buf
program L[B] was inaccurate at times; to get results as reliable
as [El's , program  [E] would have to be run twice, the second
time with coefficients reversaed, and then the two sets of resulis
would have to be combined with some additional arithmetic. Thus,
the iterative program runs faster on the HP- 15C  than would &

18



CubicX _ WORK IN PROGRESS MNov. 10, 1786

reliable program based upon closed-form formulas despite that the
compler inverse trigomometric functions available on that machine,
but omn few others, promote the implementation of the formulas.

13. Annotated Bibliography:

An old encyclopaedia like the Britannica is as good a place as
any to look up the Italians Scipione Ferro, Tartaglia (Niccolo
Fontana) and Hieronimo Cardano, and the Frenchman Franciscus
Vieta, who first produced closed-form solutions for the cubic
guuation. Their formulas can be found there too under the heading
"Equations, Theory of"; or in handbooks like the Handbook of
Chemistry and Physics, the Chemical Rubber Publishing Co.,
Cleveland; or the Handbook of fMathematical Functions edited by
M. Abramowitz and Irene Stegun, #55 in the Applied Mathematics
Series published in 1?64 by the U. 8. Natiomal Buresau of Standards
but obtainable now reprinted by Dover, N. Y. The algarithm RC
pregented in 83 and 84 has not been published before. o

The genesis of rounding errors on older electronic computers is
described well by FPatrick H. Sterbenz in his book Fleating-
Point Computation, published in 1974 by Frentice-Hall, N, J.

A better arithmetic design is specified by the IEEE standards
754-1985 and pBS4, to which many of the newest computers conformg
these standards have been described by W. J. Cody et at. in “#A
Proposed Radix~ and Word-length-independent Standard for Flaaking-
Point Arithmetic" in IEEE NICRZ, August 1984, pp. 86 - 100, ‘

An elementary overview of error analysis is provided in parts of
the HP-I15C Advanced Functions Handbook, Hewlett—-Fackard part no.
QOO15-9011, 1982. Backward error analysis in particular is the
subject of Rounding Ervors In Algebralic Processzes by James H.
Wilkinson, Prentice-Hall, 1243. The error analysis summarized in
8% bhas not been published yety its approach is similar to that
in Brian T. Smith's "Error Bounds for Zeros of a Folynomial
Basad Upon Gerschgorin's Theorem” in the Journal of the ACH
val. 17 {19270}, pp. 661~-674, wherein may be found also the proof
of the claims for the three inegualities near the end of 86 .

86's procedure REVAL is similar to one presented and explained
in "A stopping criterion for polynomial root-finding® by Duane
A. Adams, Communications of the ACH vol. 10 (12467), pp. &5T-658.
The precanditioning techniques in 87 and the scaling techniguss
in 8 are new although similar in spirit to technigues describaed
in the author's lecture notes since 194643. The theorem by Bauss
that relates the zeros of a polynomial and of its derivative, and
Laguerre's theorem mentioned in &6 , can both be found in
Geometry of Zeros by M. Marden {(1946é), American Mathematics
Society, FProvidence, R. I.
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