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Th1s paper is a recommendat1on for a standard f]oat1ng point

'system that can be 1mp1emented on a var1ety of computers. The

proposed standard is def1ned to 1nc1ude~a standard storage representatxon‘ ‘:}{1'

and a functional descr1pt10n of how | ':‘- the f]oating-po1nt |

B
unit carrles out computat1ons, what numbers are praduced and ;

wh3ch exceptlon cond1t10ns are flagged by the un1t e ;
. B

at the conc]us1on of an operatzon..

The purpose of standard1zat1on is to benefIt many cIasses of

-

_ peop]e. Ultimately, standard1zat1on shou1d encourage relat1ve1y
few peop}e to concentratethe1r ta]ents to create fast eff1c1ent
and accurate f]oat1ng—p01nt un1ts free from anoma11es 11ke those that |
continue to nlague f}oat1ng 101WL q1g0r1hnﬂ> aven aa the cowcuter
industry enters its fourth decade. With hardware-1mplementat1ons of

ﬁhe standard considered to be as high—que1ity as peesible,-the Job

of the systems impfementers who do the Iibrary function routines; o
conversions, and mathematical interface becomes that much easier.

The f_ lfioatxng—po1nt interface presented to the app11cat1ons _‘
programmers is then that much more trustworth} SO that the appTxcatTOns
packages can be deve10ped W1th a minimum of know?edge of the underﬂying
behav:or of the floating-point hardware. F1na11y, the hwghest Tevel

of users who obtain the computer generated-data and make their decisions
based on the computational reeuits can do so kndwfng that their results

_'are as accurate as possib]e“ﬂarjthat i part1cular algor1thm for computatton.



The __; tloating- po1nt un1t and the representat1on do not

- contribute any more error than necessary due to f1n1te precxs1on
and 1nherent round-off error. No more-accurate answers could -
be obtained under the given cond1t1ons.,‘Aﬁdmalies sdch as

un1n1t1a11zed storage, masked fault 1nd1cators mass1ve 1ntervent1on of

E“
i

-overf1ow/underf1ow1ng and the 11ke cannot go undetected by the standard

| Standardizat1on prov1des for 1nterchange of encoded
\f]oatlng—po1nt-data from machine to meeh1ne, and_creates a
potential market for fioating-point‘modu]esdto attach thfough
standard 1nterfaces to a var1ety of host mach}nes Computatlona] resu}ts
become repeatab]e from one manufacturers mach1ne to another s, perhaps

for the flrst time in the h1story of f]oat1ng po1nt
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| This report is organized as follows. _Section_I is a
tutoriail description of‘the‘standard that communicates the
features of the standard and the reasons for 1nc1ud1ng them.
Sect1on 11 describes the storage format for the standard
and 39ct10n III treats the mach1ne reg1ster format and o
prec1s1on of the ar1thmet1c operatzons as prov1ded for by |
the standard The exact regxster format 1s not prescribed by
the standard although m1n1mum f1e]d widths are spec1f1ed for f;
exponent and s1gn1f1cand Resu]ts of ar1thmetlc operat1ons B
described in Sect1on III make use of a guard d1g1t round bit,

and StTCkY bit so as to obtaln the most accurate results poss¢b1e

‘wzth1n the constra1nts of the register prec1szon. Conver51ons,,;_ .

 to and from the b1nahy f}oat1ng-po1nt format are_considéred

in the next section. Seétioniv specifies the féu1ﬁs‘nnd'mndes-
of - the standard and exhaust1ve1y treats aTT of the comb1nat1ons
of operand pair types, and how they are to be treated by the

arithmetic unit and host computer. _
Appendices g1ve the detailed spec1f1cat1ons for the o

ar1thmet1c operations and frap hand]xng cond1t1ons.
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I. A Tutor1a1 Descr1pt10n of the Standard

In this section we give an overv1ew of the prov1s1ons of the
standard and an intuitive exp]anat1on and Just1f1catlon of the features
1ncorporated 1nto the standard. |

Representab]e entities

The standard prov1des for the representat1ons of

nonmalizedfnumbers;—.NormeTized nnmbers ake,rea1 nnmbefs
and each'f10atingepoint rebnesentatien'of.a normalized
rea] number represents a s1ng1e rea] number. |

denorma112ed numbers - Each denorma11zed number represents B E :
an 1nterva1 of real numhers Denormalized numbers are |
produced by arithmetic operations when the resu1ts
of the operat1ons are two sma11 to represent as a normal1zed
number. The size of the 1nterva1 assoc1ated with a denormalized .
'numher is approxxmate]y equa1 to tne bound on the round1ng
error caused by chang1ng the true resu]t of an operat1on |
into a- denorma11zed representatlon. - |

1nf1n1t . Thelstandard prov1des for p]us and minus 1nf1n1ty '
wh1ch are generated as the result of operat1ons that
produce rea1 numbers too 1arge in magnxtude to represent
as norma11zed numbers, and as-a resu]t of division by 0.
invalid operation,. poss1b1y an operat1on 1nvo1v1ng an
1nf1n1ty, denorma11zed number, or another NAN. The NAN
»nepresents.nornumben,qbut-dees=centain informat1on that

tells how and where it was generated._



Entfties that are somewhat unusual are the denormanzed numbers,
1nfinitfes and NANs. The reason for their introduction eXposes '
‘the under]y1ng phi]osophy in the des1gn of the float1ng p01nt standard.
F]oat1ng point operat1ons on norma11zed representab]e real numbers o
must 1nev1tab1y produce results that are outs1de ‘the system of _ﬁ _
representab1e rea] numbers.. Th15 is 1nherent because of the f1n1tenessi 
of the set of representable real numbers.. When a nonrepresentab]e
'resu]t appears someth1ng spec1a1 must haupen.. In th1s standard
‘one of two th1ngs happens-—e1ther a trap 15 geuerated or the i
result is a special ent1ty, and the standard prov1des for proeram 11 '
: contro] of whether or not the trap is generated The standard f .
is specified so carefu11y 1n the treatment of spec1a1 ent1t1es that
in a wide variety of sxtuatlons the hardware can dea] w1th the '
spec1a1 ent1t1es in subsequent calcu1at1ons and the prob}ems t
‘.caused by the special resu1ts will s1mp1y d1sappear w1thout
any 1ntervent10n or spec1a1 attent1on by error hand11ng software
Thus, programmers may be able to av01d spec1a1‘tests for-oyer and
underflow in the midd]e of'loobs Of-certaih computations; and may'
-'be ab]e to 1ncorporate 51m11ar eff1c1enc1es in a host of computat1uns :
w1th the know]edge that shou]d an error cond1t1on ar1se,_ the ij” R
-calculation will cont1nue-W1th a spec1a1 ent1ty that may dwsappear -
in a subsequent ca1cu1at10n, Ieav1ng normaiized rea1 answers _
that are correct to w1th1n the round1ng error assoc1ated w1th the ; o }‘gs |
computat1on - Thus programs can -be- wr1tten to defer tests for spec1a1 events as Iong
as poss1ble and to e11m1nate the tests comn?etely in some cases.

The standard a1so prov1des for extended prec151on of 1ntermed1ate

resu]ts-he]d‘1n registers so that additional protection: against over and underflow
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is obtained when a series of computations“cah'be done'in
the extendeo registers_before storing the.reeu]ts back 1n'storager
in a format with less precision and dynamicrenge.f
The denormalized numbers provided for by‘the standard

represent intervals of numbers rather than ihdividua] numbers.
Shoold the result ofiacomputation be a denorma1i2ed number 'theo '
the true result shoutd be 1nterpreted as iy1ng somewhere w1th1n
the 1nterva1 represented by the denorma11zed number The 1ntent
of 1ntroduc1ng these entities: 1s_that once produced, they
can be combined with normatized numbers ahd may well produce’
" results that are norma1ized “Thus a denorma11zed number may aopear
only to vanish a short time 1ater w1th 1ts 1nf1uence spread |
during 1ts abbrev1ated_11fe—t1me 1n_3ust the way that a correct
representab1e'result'shou1d have its influence fe1t:were it poésible
to represent-the true result.. | _ 

" The formets.of the entities representeb1e_here beeo~chosen
so that the entities can‘be ordered by using a fixed-ooint -
signed- magn1tude compar1s1on in pTace of a fToat1ng po1nt compar1son
Th1s is much faster, and. provides for very s1mp1e tests in sorting
and searching files of f1oat1ng po1nt data, where f]oat1ng po1nt
:ar1thmet1c operat1ons need not be done. o |

Arithmetic operat1ons

The standard specifies that arithmetic operations,are_carried

' out to/grecisionofﬁroyghﬂy'he]f-a—?uniﬁrinfthe¢1astﬁp1aoe.-Toechieve
‘this precision, the erithmetic units @111 reqoire.at.least 2 guard
digit, round bit,'andestjcky,bif. 'The:guard dﬁgitﬁand round.biﬁ

can ‘bhe viewedfas“The*ngnfficahtVthS'jUSt'beyond”thersighificance
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of the data held in the register - Should the'significand require '
. a left shift to renorma11ze then the guard d1gxt and round b1t
prov1de the data to be ‘shifted into the register. " The sticky _'é
bit 1nd1cates if there ts/ﬁgﬁzéro bit off to the r1ght of the c B
round bit in the true representat1on of "the resu]t of an operation.
Round1ng uses the guard digit, round b1t “and st1cky bit to determ1ne
the nearest representab]e number above or be]ow the g1ven result.’f
| There are four round1ng modes provided by the standard |
‘one mandatory mode wh1ch 1is the defau]t mode and three additlonal
optional modes that cover, respect1veﬂy, truncat1on toward 0, '
truncat1on downwards and truncation upwards The latter two
are 1nc1uded in the standard at thxs time to prov1de for future . _.
extens1on of the standard to 1nterva1 ar1thmet1c. A 51ng1e mode
‘-should suff1ce for typ1ca1 operat1ons but the cost of supp1y1ng S
‘the additional modes is so small that the ga1ns from 1nc1ud1ng |
the modes dictate that the opt1ona1 modes be prov1ded if p0551ble.
~ The modes for interval arithmetic, for examp1e make poss1b?e a
qu1te eff1c1ent system.for 1nterva1-ar1thmet1c-1n wh1ch a computation.
on. 1nterva1s is a small 1nteger constant t1mes the cost of the same
.compotat1on performed on s1mp1e numbers. Then 1nterva1 ar1thmet1c -
s teasib}e~' 7 1n such a system, whereas today 1t is far too cost!y |
-tO'ose. Interval ar1thmet1c prov1des an a1most 1dea1 mechan1sm for
| bounding the error of 2 numer1ca1 computat1on | . :
| The arithmetic system supports two diStTnCt modes for computat1ons
1nvolv1ng 1nf1n1t1es The affine mode treats pTus and minus 1nf1n1ty |
as distinct entities, which corresponds_to a rea] number system'In which
Lthe-continuom‘of%numbéns ts diSCOntinuous at infinity.y:The Erﬂjédtive_-

,mode'treats-the-real'number system as a System in which plus and minus
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infinity are the same entity,‘and_the real numbers:are continuoos
at infinity as we}1 as in the range of fiaite nombers;, There |
are algorithms in real analysis that depend-ondthe affine mode,
and similarly there exist a]Qorithms from projeotive geometry that
depend on the prbjeCtive.mode.' No'single way of dealing with_ )
infinities could sat1sfy both types of a1gor1thms and both _
types must run on modern computer systems S1nce the standard prov1des for!
the representat1on of 1nf1n1ty, the standard must equa11y we]l prov1de
for the proper way of man1pu]at1ng 1nf1n1ty Thus it must prov1de
both the aff1ne and proJect1ve ar1thmet1c modes.; Fortunate]y, the |
'dlfferences in the two arithmetic modes are qu1te few, and the
comp1ex1ty requ1red to provide both modes is neg11g1b1e

The maJor ph11osophy behind the use of 1nf1n1ty as a representab1e
number is that by producing th1s as a resu?t of an operat1on -the
computer can proceed w1thout a trap, and w1thout requ1r1ng spec1a1 '
tests for overflow w1th1n a t1ght 1oop Tt is qute,conce1vab1e |
" that on a later step the infinity_witT be'divided_intoja finite
real number, producing a zero, SO that:toe iofinity‘wi11 Tive only
“a briet time'before vanishiog- No part1cu]ar comp]ex1ty or overhead
in the software is requ1red in such an 1nstance Consequent1y, the -
floating-point system definition w1th 1nf1n1ty can prov1de an eff1c1ent
‘computing environment and can reduce the leve] of d1ff1cu]ty in
creating qua11ty numer1ca1 programs o -

-This ph1losophy-extends-1nto thettreatmentaoffonderflowswasawe}l.
Underflows are often treated by setting a resuTt to 0 and oontihuing
But it is not difficult to construct 1nstances in. wh1ch th1s act1on

':gtves comp]ete]y erroneous resutts. 'The#denormalTZEdAnumber”3theme
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replaces the underflow with a resuit that representS‘an interval
of real numbers. Essentially, the denorma11zed entity ie a
symbo1 that says “the true- resu1t is too sma11 to represent to
mach1ne prec1s1on, but it lies w1th the 1nterva1 at x4 b .
- Should a denorma11zed number 1ater be added or. subtracted from |
a norma¥1zed number, the operatlon can be done to the prec1s10n
of the extended reg1sters, and a]most surely the resu1t of |
such an operat1on is a norma11zed number ‘What th1s says is

that no matter wh1ch % in the 1nterva1 a £y 4

b represented
hy denorma11zed number is used in the operat1on, the result
of the operat1on rounded to extended reg1ster prec1s1on is the
one delivered. In th1s way, a11 of the error attr1butab]e to.
the underf]ow van1shes.

When you consrder the several fac111t1es of the standard 1t
becomes - apparent that prob]ems attr1butab1e to overf1ow and underflowc
‘may well become neg11q1b1e. Extended prec1s1on 1n registers keeps
such problems from occurr1ng dn the f1rst p1ace But‘shou1d such
cond1t1ons arise, then qu1te - often the mechan1sms prov1ded by
1nf1n1ty and denorma11zed numbers are suff1c1ent to deal w1th the -
prob]ems without any spec1a1 programm1ng techn1ques |

Two ar1thmet1c operat1ons prescr1bed by the standard 1nc1ude
the MGD funct1on and the square root These are s]1ght varxants
of the d1v1s1on a1gor1thm, and can be prov1ded rather 1nexpens1ve1y
By 1ns1st1ng on these operat1ons as be1ng pr1m1t1ve operat1ons,
the standard forces a guaranteed prec1s1on on ‘the eperat1ons,iand

implies that they will be 1mp1emented to run at reasonab1y h1gh

speed as we11 Th1s makes such pr1m1t1ves quite usab]e in

atgorithms - for comput1ng e1ementary funct1ons and other numer1ca1 calcu1at1ens
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" that require fast and precise results.

o Traps and faults

Because some operations on real numbers can lead to undefined'

and invalid reeu]ts (such as 0 divided by 0) the standard prov1des

'Vfor a trap and fauit mechan1sm. Under certa1n cond1t1ons, a trap

occurs, with the result be1ng a program 1nterrupt1on to a software SR

~ trap hand]er, wh1ch then sorts out the prob]em and takes correct1ve '_5:

or diagnostic action. We 1nd1cated that the standard is actua]]y |
des1gned to avoid traps where poss1b?e Consequent1y, the
traps prov1ded by the standard can be enab]ed or d1sab]ed by

program contro1, and the programmer has the opt1on of 1nvok1ng

the trap mechan1sm shou]d his resu]ts go awry

Each trap is associated with one or more status b1ts for that T e

trap. These bits are set ‘vhen the fault cond1t1on occurs, whether E
or not the correspond1ng fault is enab1ed In th1s way the
programmer can run his program to oomp]etion before 1nterrogatiog
the machine to oetermine i an overflow Ocourred prior to‘termination{ |
It is quite poésib]e that all resu1ts returoed ﬁiTT'be COrrect'l |
representable numbers, yet the status b]ts may 1nd1cate that al?

kinds of terrible th1n95 ]1ke overflow and underf]ow occurred en route.

Th1s wou?d mark an 1nstance in wh1ch the hardware aSSTStS dea1t

“with the problems correct1y

The traps include the fo]]ow1ng Overfiow, underflow, 1nva11d

operat1on, and d1v1de except1on Each can. be enab]ed or dlsab1ed When | o

disabled, each fau}t condition- produces some’ result and cont1nues
0verf1ows generally produce 1nf1n1t1es, and-underflows generate
denormalized numbers . uThe;others.produce'rNANs;that indjoateﬁthe

nature and origin ofethe fault.  Each of these traps'hgg“ at.]east,
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one associated status bit that is set when the fault coﬁdit{on
occurs, and remains set.uhti]'c1eared.by the progeam. 1t
is qu1tefﬁdesirab1e~to:have fore than eneﬂbit‘ﬁer'fault eonditioh with
the extra bits recording additional information about the“‘-
fault. Ideally, the status bits contain the program:coenter,
- value at the point of'fau1t, and possibly the program-counter‘
values at the first and Tast. fau1t§ recorded. Th1s type of |
status record1ng is espec1a1]y des1rab1e for overflow fau]ts ‘
'It is not necessary at all for 1nva11d operat1on fau1ts because :‘
the NAN produced by this fault conta1ns 1nformat1cn about how
and where it was produced. T ;: ge - _ ‘\”'

There is one additional status bit that 15 not assoc1ated
w1th a fau]t.-‘Thxs_1s the inexact bit. If the resu]t of a:
fioating point.operation is rounded ffom;the true result, the
inexact bit is set to 1, otherwise the bit is reset to 0.; Arprogram
can therefore test to determ1ne if round1ng occurred dur1ng an N
operat1on This type of test 15 extreme]y useful when perform1ng |
"1nteger ar1thmet1c in the floating po1nt reg1sters. As Tong as )
the integers man1pu1ated contain suff1c1ent1y few s1gn1f1cant d1glts
tO'f1t,w1th1n the_prec1s1on of the significand, the float1ng—p01nt .
-system is quite usefuT Ter'this=§urpose.because iieautomatically-takes
care of .- b1nary po1nt a11gnment Nhen-a rounding éekes.biace,‘f:
V-the number of s1gn1f1cant b1ts have ‘exceeded the prec1s1on available.
Business app11cat10ns are qu1te 11ke1y to find. the f]oatxng p01nt
system attract1ve for integer- ar1thmet1c, but must have the 1nexact bit

to be protected from the loss . of significant data._



Conversions

The standard provides_for*conversions to and from fioatiﬁg—point
‘format, and specifies a method and number of digits to carry that
guarantees the accuracy of conversions. With this mefhod it
is possible to convert binary f]oatinngQint data tb a deéimal
configuration and‘back again 'and-retover'the identiéa] binary
floating-point data. Th1s féature is essent1a1 to prevent
drift of.constants By repeated cpnvers1ons. It has been observed :
thaf spme'programming systems store fiies externa]]y in a decima]
(or chéractef4oriéntEd)format; and update_the fiTesffepeafed1y.
During updaté,'the'data on file are converted.to binary-for prOCESsing
and reconverted to decimat for output. Some conversion methods .
Tead to a small amount of error in the convers1on wh1ch 1f b1ased
slightly in one direction or the other eventua]]y causes drift in
that direction of the constants Stored on. the fi?e.

'Coﬁversions require vény few primitive operaﬁions.. The éiementary
operations are a conversion from .a decimal represéhtatfon into
a b1nary integer and converse1y, and a means for. bu11d1ng a floating~ po1nt
integer from a b1nary 1nteger. It is also necessahy to have some
MEans forxfindiﬁg the integer part of a float1ngﬂpo1nt number.
‘_The‘conversions‘depéndron'the existenée;of;tabieslthat:containwaccunate
representations'df powers of 10 to a precision'eQUal to'that of the
.extended registers. A brute force impjementatioh mighthéjl-store
“the -tables to full precision in-cbmpﬁter“meméry,fpdssiﬁ?y“in-a speCia1
read-only memory. More sophisticated'methods Stdre only parts of
the. tab]es and reconstruct the entr1es not stored as: requTred at the

' expense of a small computat1on
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Future extensions

The standard Teaves open certain questions that can be resolved

at a future time. This standard cal]s for a b1nary rad1x format -

~ when one can argue for a dec1ma1 rad1x as we]1 Recogn1z1ng the

-attract1veness of a dec1ma1 read1x standard fbrmat, if not for now
then for some time in the future we have~used the word "d1g1t"
rather the word "hit" to descr1be an ent1t1y whose magn1tude is bounded
by the radix. - Should there be.a dec1ma1 standard format then the g
‘word “d1g1t" denots a s1ng]e dec1ma1 digit; and the recommendat1ons here
will hold for. the decimal standard-as well. “In thepresent context
. the word "digit" denotes'oae_digit in binary rad1x,_and thus denotes
one bit, - _' | | e R |

The resu1ts of operations and the inclusion of negat1ve zero are
_consistent with an extens1on to ‘interval ar1thmet1c “f 0pt10na1
rounding modes for this standard become mandatory for 1mp1ementat1ons
WTth 1nterva1 arithmetic. G1ven the fac111t1es of th1s standard 1t
will be poss1b1e to implement 1nterva1 ar1thmet1c on an experamenta]
basis so as to determine its spec1f1c requ1rements. Such exper1mentatxon |
should also estabTiSh‘the beneftts_of intefva].arithmet1c to provide
data on whether or not an extension_qfrtheistaadaﬁd‘toeinc1ade interval

arithmetic is worthwhile. -



IY. Storage Formats

Standard formats are 32 and 64 bits in length as shewn in ?ig. 1.

The 32-bit and 64-biteformats are called shqrt and 1ong,'reépective1y, o

in the remainder of this‘report 'The fntentionzof standafdizing |

the storage Format 1s to provxdo a mecnan1sm‘for1nterchang1ng anary

.f]oat1ng p01nt data from mach1ne-toﬂmach1ne wzthout requ1r1ng

. conversion, or to enabTe spec1a11zed f?oat1ng-po1nt processcrs -

to’ man1pu1ate data in the memory of a host mach1ne,,1ndependent

of the 1dent1ty of the host. | | N | | |
Each. of the formats prov1des a s1ngle b1t for s1gn, a fie]d

for a b1ased exponent, and a f1e1d for the 51gn1f1cand wh1ch

is an enceding of the s1gn1f1cant d1g1ts of the operand

The formats prov1de for the encod1ng of norma}xzed floating- po1nt

numbers whose interpretations are real numbers Iy1ng within the

range of representab1e numbers. A]so encoded in the format are

entities that have a special s1gn1f1cance and are der1ved from ‘
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71 bit g bit @ as b
Sign Exponent - - - Significand .

31 30 - 2322 o 0

‘Short format

| S (1+)52 bit -
T R A
Sign ~  Exponent - Significand -

63 62 - 52 51

Long 'format _

Fig. 1 Long and. short floating po-int,formats.



underf]ow; overfiow, and improper arithmetic.operations.. The
intention of the standard with respect to these specia] quantities
is to provide a mechan1sm for dealing with anomalous cond1t1ons )

' automat1ca1]y 50 that in a11 but the rarest of s1tuat10ns the |
f]oat1ng-po1nt processor can treat the unusua1 conditions so

as to obta1n the most near]y accurate answer poss1b]e. In.h

the very rare 1nstance that cannot be treated by the f]oatIng po1nt

processor, an 1nd1cat1on of. an error cond1t1on w1]1 be gtven

'e1ther through a fau]t trap or by return1ng a speczai nonfloat1ng p01nt o

‘ quant1ty |
In short format, ‘the ent1t1es encoded -and their Tnterpretation
are: _ | |
1. Nonzero norma11zed number. Let p be the value of the
sign d1g1t e the exponent, and s the 51gn1f1cand each taken
as b1nary 1nteger encod1ng Then the number n encoded by

v
¥
1.
i

a short float1ng point word is:

(1)929127(“523) |
This encodlng is valid for a11 exponents e-in. the range_
1% e € 254. Hewce. B = Inl & 2" .
:é.-Nonzero‘denormaitzed'numberﬁ when‘e =0 and s 0, the
number is assumed to be denormalized and has the value:
=’ (_np "126( ) -23) - (_l)p -24149 . R

3. Zero: P]us zero is represented by p = ¢ ='s = 0.

94._Ne9at1ve Zero: There is-a negative zero in th1s representat1on

d1st1ngu1shed bye=s=0, and p = 1

5. Infinity: There are two 1nf1n1t1es 1n the representat}on,

with plus infinity represented-as-p ‘s'=0, and e = 11...12-— 255

Hc)uc:a 2 4} l“

' 12{



Negative 1nf1n1ty has a negat1ve s1gn and is otherw1se
the same as pius 1nf1n1ty Thus for negatzve 1nf1n1ty
p=1,5=0,and e =11...1, 25510
6. Not-a-naner (NAN)' These quantities‘are not numbers‘and.r
. “are used to 1nd1cate 1mproper data or resu]ts of 1mproper
operat1ons These quant1t1es have e = 11 "12 25510 _
and s # 0. The s1gn bit p may be e1ther p?us or m1nus (0 or 1).
In long format the ent1t1es and the1r representat1ons are: :
1. Nonzero norma11zed number n= ( 1)p2e 1023{1 +s. 2 52)
. where e is an 11- b1t field and s 1s a 52 bit f1e1d Th1s  -”:

L encod1ng holds for all b1t patterns e except those for

wh1ch e=0ande = 11.. 1, = 2047, Nmue 2.'azz'<=lv1t <: 23°1*

2
_ 2. Nonzero denorma11zed number: When e = 0 and s # 0, the number

| ) eo O 0 .
represented'1s n :'(-1)9,2 102_2-(3-2 52) = (-1)P.2 1074-5 H 2’9‘%5Jw(<2

3. Zero: Plus zero is represented by.p-=‘ =5 eto.,
‘4. Negat1ve zero: M1nus zero is represented by p = te = s'= 0.
5. Infinity: Plus 1nf1n1ty is represented as p 0 and

e = 11..;12'= 2047 - Minus 1nf1n1ty is represented as |

| 10°
1, s =0, and e =p11... , = 2047

P ‘10° 8
6.'NAN Encod1ngs 1n wh1ch e =11.. 2 2047 iend s #'O -
| represent ent1t1es that are not numbers. 7 | '
Tnere are a number -of comments that exp1a1n the reasons for |
- the structure of the format and the choice of representab1e ent1t1es.
As ‘the standard;is explaimedin greater.detailj]ater in this report,

- most of‘the'comments made here will be becked up by the technica] -
discussion. e



The formats obviously must encode an éxpenent, sign, and
‘mantissa. Thevchoice of representation fdr}the=mantissa assumes Wawmaqg '
that the numbers are normalized, so.that the_leeding digit is
nonzero. Since the radix is binary, this'digit is known to be .
a: 1, and need not be represented explicitly 1n storage Consequentfy,.
it is 1mp11c1t in the representat1on _(Th1s bit is sometimes '
called the hidden b1t, and Fh1s type of rebresentetion has
. been implemented on commerciei ﬁachinee) 'hFor denormaiized numbers
the 1ead1ng b1t 15 no Tonger 1mp11c1t, so one b1t of sxgn1f1cance ‘
' (at 1east) is 1ost and the 1nterpretat1on of the exponent of
a denorma11zed number d1ffers by one from the 1nterpretat1on for_‘

-

a norma]xzed number.
The storage format and ch01ce of{representat1ons guaranteee
'that it is poss1b1e to order a collection of float1ng point |
numbers by means of fixed-point Signed maéhitude'eomparisoh.:
In fact, the.orderﬁﬁg_obtaihed raﬁké the.ehtitiee as foI]ows‘ 
from smallest to‘jargeste _. | | o |
‘_negatiye.NANfs
minus infinity
.negat1ve norma11zed numbers.5 i
negat1ve denorma11zed numbers |
'mm_us‘o . These +w e +m55 are mf dfsf-nju'sb"f’
:p“l:-u.s’; | 0 - % 63 eré-._narj. a.r..%mel‘t.c. e{:me
'positi?e-denormalizea.nuﬁbefe“  
positive norma]ized nembers ' e
{p}usminfinity S |

;positive*NAN's"
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This is an extremely import&nt chanacteristié‘of the
representation because Signed~magnitude.fixed-noint_comparisons |

are extremely efficient; requiring simplé hardware;and very little

time in con?rastwu to floating;point comparisons. VCOnsequent?y,j“

to sort files, toVCOnstructéhiétograms, and to perform simi1an [

kindsrof operationé on f10a£fng-point data,'nné neéd:ndfnmake

use of floating- p01nt ar1thmet1c hardware, and the computat1ons ‘

.can be done very qu1ck1y Ar’sa_, NON s can be Ae#cw‘a! eesf@ kfaa}e '”M' [>1 “"’

| The choice of exponent length and s1gn1f1cand Tength are ' R

c1ear1y 1nteract1ng dec1510ns and at best there 15 a trade—off

B between them for the short format Because-of ‘the w1de—spread usé o
of computers with a ward 1ength equal to a mu1t1p1e of . 8, it 1s

-'essent1a] to adm1t -a standard format that is a. multiple of 8.

"The shortest pract1ca1 standard format is 32fb1ts.' Be]ow‘thjs

length, floating-point operations are stf11 préibIe; buf‘thef‘
precise needs are highly speciaTized'and.vary frnm'abp1i§atfon to
app1i¢ation, No oné fermat nan-Satisfy tne'épe;iai néeds because |
the compfise in choosingldn exponent 1ength énd significand 1ength .

" that fit in a word shorter than 32 b1ts 1nherent1y must fa1] to
satisfy a 1arge number of the app11cat1ons ‘that requ1re such short
formats.‘ ' | -

For the- 32—b1t Tength exper1ence has shown that a 7- blt
-exponent 15 s1mp1y too sma11 to be acceptab]e, 50 the standard

‘ ‘.requwres a format of 8 b1ts for the exponent; For thls 1ength
the s1gn1f1cand is. 23 bits, which is admlttedly quxte sma11 1n 1tseif

However, because of the hidden bit, the-format g1ves-essent1a11y‘the
same significance as a 24-bit mantissa,ﬁand:thenérhave'beén commercial

f]bating—point formats with. this mantissa size that serve-é nariéty fcd:

Tt TN A



applications.

The long format 1is c1ear1y the preferred rormat when:adeqUate storage
is available, and when the additional precision improveérfhe accuracy and
credibility of'the resuits. Here the expohent.1ehgth is-11 bits, which gives
‘a very large dynamic range roughly the same as on some Wieely used commercie1
computers, and the rema1nder of the b1ts are al]ocated to the s1gn1f1cand
The format also sat1sf1es the constra1nt that the product and quotlent of
two norma11zed short numbers cannot overfTow the 1ong format _.

The exponent b1as 1s s11ght1y d]fferent from the bias one‘m1ght expect
given the formats that have been used 1n “the past Instead of chooszng a
bias that sp]tts the representable numbers rough]y equally between those greater
“than unity and Jess than unity, the blas is chosen 50 that there are about
four t1mes as many norma]lzed numbers greater ‘than un1ty as 1ess than un1ty
This is done purpose1y to make- overflow tess 11ke1y than underflow 0verf1ow,‘.h
as we shall see later, 1s more difficult to treat than underf1ow, and should - o
therefore be allowed to occur less often. Underf]ow is hand1ed by the
standard in a "ferg1v1ng" manner so that in a11 but the rarest of :
“cases underfliows that occur can be treated w1th v1rtua11y no more loss"‘.
of s1gn1f1cance 1n the final results than wou1d otherw1se have B
been caused by‘roundcff alone. The standard encourages a1gor1thm des1gners'
to bias‘their algorithms to fa11 by underf1ow_rather than by
_.overf]ow'where'the.designers canhscé]e;their:datetto'create this
bias. . Since the hhderf]oWs can be dispceed“df_aimostrerrOr'free .
in neerly all cases;znhmerical algorithms can'fhehybe made uirtua]]y
ﬁfree<of'prob]emsueXperienced*rn:presentﬁﬁay;algorichms-because_
of overflow and underflow. | | |

~The inclusion of negative.zero is,principa]]yefor;the;future



This is an extremely important charaeteristic of the
representation because signed- magn1tude f1xed p01nt comparisons
are extremely eff1c1ent requ1r1ng sample hardware and very 11tt1e
time in contrast~ to floating-point compar1sons. Consequent]y, :
to sort files, to construct h1stograms and to perform similar '
ktnds of 0perat1ons on f]oat1ng point data, one need not make
use of floating- po1nt ar1thmet1c hardware, and: the computataons
can be done very qu1ck]y. Also, NoW's can be Adm‘ed eqsf@ Mauﬁ@ ‘”A"["' !°°!

The ch01ce of exponent Tength and 51gn1f1cand 1ength are - | S

tc}ear1y interacting dec1s1ons -and at best there is a trade~off
between them for the. short format BECause of the w1de—spread use
of computers with a word length equa1 to a mu1t1p1e of 8, it 15 :
"essent1a1 to adm1t a standard format that is'a mu]t:ple of 8.
The shortest pract1ca1 standard format is 32- b1ts.- Be]ow th?S .
| 1ength float1ng point 0perat1ons are st111 poss1b1e, but the |
precise needs are highly spec1a11zed and vary from app11cat1on to=
app11cat1on No one fermat can - sat1sﬁy the spec1a1 needs because
the comprise in choos1ng an exponent 1ength and s1gn1f1cand Tength
that fit in a word shorter than 32 bits 1nherent1y must‘fa11 to |
satisfy a large number'of_the applications'that.require snch'ahort
formats _ | 7: _ : | - |
For ‘the 32~b1t length experlence has shown that a 7mb1t ‘

exponent 1s s1mp1y too sma11 to be acceptable; so the standard

o requ1res a format of 8 bits. for the exponent. For th1s length

the s1gn1f1cand is 23 bits, which is- adm1tted1y qu1te smaTl 1n itself.
~ However, because of_the h1dden-b1t, the format g1ves‘essent1a11yathe
same significance as a 24-bit mantissa, and there have been commercial

f]pating-Point formats-with‘thts mantissa‘size’that serve'a nariety oF |




applications.

The long format is c]ear]y the preferred format when adequate storaoe
is available, and when the additional prec1s1on 1mproves the accuracy and -
credibi]ity of the resutts. _Here the exponent.1ength is 11 bits, which glves :
arveryrlarge dynamic range roughly the same as on.some widely used commereia1
computers, and the remainder of the btts are a11OCated to.the significand. |
The format also sat1sf1es the constraint that the product and quotient of
two norma11zed short numbers cannot overflow the 1ong format _ |

The exponent b1as 1s s11ght1y d1fferent from the b1as oneé m1ght expect
-given the formats that have been used in the past Instead of choosing ar
bias that sp11ts the representable numbers rough1y equa11y between those greater
than unity and less than unity, the b1as is chosen so that there are about
four times as many norma11zed numbers greater than un1ty as less than un1ty
This is done purposely to make overflow 1ess 11ke1y than underf1ow Overf]ow,
as we shall see later, is more d1ff1cu1t to treat than underf]ow, and shouid
therefbre be a]lowed to occur less often. Underflow is handied by the
standard in a‘“forgiving" manner so that 1n all but the rarest of )
cases underfTows that occur can be treated w1th v1rtua11y no more 1oss' |
of s1gn1f1cance in the Final results than would otherw1se have
been caused by roundoff alone. The standard encourages a]gorlthm des1gners '_.
‘to bias their algor1thms to fail by underf1ow rather than by |
~overflow where the des1gners can. scale the1r data to create th1s
bias. . Since the underflows can be d1sposed of a]most error free
in near]y all cases, numer1ca1 algorithms can then be made v1rtua]1y
‘ffree-Of'problemSuexperTenced Tngpresent5day:a1gor;thms because .
of overflow and underflow. o l B |

The 1nc1us10n of negative, zero is. pr1nc1pa11y for. the " future
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but is also needed to make +eo and -« work as wel] as they
inclusion of ‘interval arithmetic operat1onsAo ATthough th1s can

standard does not specify interval arithmetic, interval ar1thmet1c
as a mechanism for bounding the precision of a ca]culat1on is
_suff1c1ent1y 1mportant that we must include the necessary
_ffac1]1t1es where poss1b1e today S0 that the standard can evo]ve

~ to incorporate 1nterva1 ar1thmet1c.' The use of a representation

to d1st1ngu1sh p]us zero from m1nus zero is one such fac111ty o

.. The use of an explic?t fepresentéti&h_of‘fhfihftyVis.fhcofporéted7
to provide‘a'means f0r dea1ing-wifh'dverf10ws shpqulthey‘OCQur,_\'
and should the programmer pfefer an alterﬁative td traﬁping‘to”
a”ifault handler routine' Operations'wifh’1nfiﬁitiés are deﬁigned

automatically. However, there is c]early some loss of 1nformat1on when
an overf]ow is . replaced by :

Coan 1nf1n1ty, S0 that computat1ons with
“infinity cannot give correct results for_a]l a1g0r1thms. There‘15"

sufficient f]eXibi]itytin.the.mechanism for'deaTing;with~infinities
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7that the nurerical Ena?yst can choese to deaT with an inftnity
thrcugh a fault rout1ne or to have the hardware- deal w1th the -
matter automat1ca11y§depend1ng on the sens1t1v1ty of the algortthm jr
to the fault handling mechanism. i

The 1nc1us1on of two infinities, plus and minus infinity, .

is 1tse1f worthy of dTSCUSS10n. In rea1'ane1ysis'there'are - AFnelies
two d15t1nct and c0n51stent mathemat1ca1 systems for the real i' ”“?*ff3777§":rf

numbers w1th 1nf1n1ty. The affine closure of the rea1 numbers

has two d1st1nct 1nf1n1t1es p]us and minus 1nf1n1ty, and there

is a d1scont1nut1ty between p]us and minus 1nf1n1ty The QrOJect1ve
closure of the real numbers treats plus and m1nus 1nf1n1ty as
a single ent1ty, and the rea1 numbers const1tute a cont1nuum | PRI
as you move through the positive numbers to plus 1nf1n1ty, m1nus | "E%Bﬁﬁféfiggf

'1nf1n1ty,‘and-on to the negative real numbers;- An exampie of ‘

a function that is cont1nuous through m1nus 1nf1n1ty to p?us

1nr1n1ty and on around agaln is the ‘unctlon tan @, wh1ch
obviously ar1sesfrom proaect1ve geometry, and thus 1is def1ned
- on the projective c1osure of the real numbers

Since 1nf1n1t1es can arise as resu1ts of computatxons, It -
is essent1a1 that the floating-point operat1ons produce the correct
representation of 1nf1n1ty. But,- unfortunate]y, w1th two cons1stent T
ways of dealing w1th 1nf1n1t1es, it 1s ‘not poss1b1e to 1ncorporate c&ﬂ@j
tﬂa single system 1nto the hardwarey dealSW1th,both systems.‘ Some -
algorithms require one system wh11e other a1g0r1thms require the other.
Fortunate1y, the differences.in the two systems W1th respect to
ﬁ%hewbeh&vrertof'theﬁhardwame_Ts:seeslmghtwthat'bothﬁsystems can.

be incorporated,by,use:of;a;mode;eetting”to-detEfané'which modé |



M-

is in effect at any given time. The detaT]s appear 1ater in th1s report.
Minus zero is a representab]e ent1ty, but it must behave exact1y as
pos1t1ve zero with respect to ar1thmet1c operat1ons on. norma11zed numbers.
In fact, minus zero must be 1nd1st1ngu1shab1e from p]us zero in programs
‘with only 0rd1nary ar1thmet1c operatIUns, and on]y special tests can . be
used to d1st1ngu1sh ‘the two zeros The two zeros do behave d1fferent1y |
when resu1ts fall outside the range of representab1e numbers since for

"pos1t1ve Xs x/0 produces an infinity that carr1es the s1gn of 0. In pro- -

jective mode, the two 1nf1n1t1es are 1ndist1ngu1shab1e, but they are dis-

tinguishable in affine mode. .Except for a few_1nstances 11ke these, the
-existehce of minus zerohcan:1arge1y be'ignored ehtij-the stahdard\incor-
porates 1nterva] ar1thmet1c. | R b h ' |

One of the very 1mportant and powerfu] features of the standard is
:the specific 1nc1us1on of NAN's in the format - The 1dea of the NAN is to
be ab]e to produce and man1pu1ate ent1t1es that carry nonnumer1c 1nforma- d
t1on. Spec1f1ca11y, they are 1ntended to conta1n codes in the s1gn1f1cand

f1er that specify when and/or where they were generated and what caused

them. to be generated; for 1nstance NAN s can be produced by fau]t cond1t1ons,‘f

. OFr. can be 1ntroduced as un1t1a11zed data. If NAN s appear in the output

resu]ts (possibly because a]1 fau]t traps have been turned off), the pro-

. _grammer will often be ab]e to d1scern how and where the NAN s were 1ntro-_

duced so -that he can-e11m1nate-the-fau]t-1n the program.
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Denormalized numbers actually represent 1nterva]s rather than
1nd1v1dua1 numbers. For purposes of 1mp?ement1ng the standard a
denormalized number with sign p and:s1gn1f1cand s is treated as if
it were the single number (-1)P.271%% 4, sudrt preeision and as the

 »~1074

number {~1)P s in Tong precision'. Actual]y,'the denopma]ized

o number represents the entire 1nterva1 of numbers in between ( })p 2—xxx(s 1/2)

and (-1)P 27%*X (s+1/2) when 2 xxx =2 -149 or 2 ]074 _ Note that these 1nterva}s
can be added and subtracted from much 1arger 1nd1v1dua1 numbers w1th the
result being a s1ng1e representab1e number to w1th1n the perm1ss1b1e |
‘rounding error of half a d1g1t in the ]ast pTace, th1s is the way denor-
ma]1zed numbers 1ntroduced by underf]ow are 1ntended to d1sappear, and

when they do d1sappear this way they leave beh1nd numer1ca1 resu1ts wh1ch '
are scarce?y more in error due to underflow than due to unav01dab1e round—
off. when, instead of d1sappear1ng, denorma11zed numbers escape from the1r‘
Z00 and turn up in final results, they serve not1ce that underf]ow has |
caused vital information to be lost. Thus we- can usually arrange our cal-
cu1at1ons to deliver valid inferences about the1r correctness 1n the
presence of underflow w1thout hav1ng to plantJ"branch‘on underflow" state—

ments inside inner loops.



| Extended_formats

‘The,standard speoifies fhe format éﬁ stofage for f1oating-point.
data because of the need to 1nterchange 1nformat10n at th1s level
and to a]low 1ndependent f]oat1ng p01nt processors to work comfortab]y -
W?th a var1ety of host processors Nhen floatlng-poznt entities _' |
are fetched from storage and p1aced in reg1sters of the host processor
or f]oat1ng po1nt processor the format can deviate from the standard
: because this is not an 1nterface for exchange of Informatton. ~”-

~ Indeed, the reg1sters no doubt will insert an exp11c1t Iead1ng
'h1dden bit to s1mp]1fy tne float1ng po1nt ar1thmet1c.

ATthough the register format is not ful]y spec1f1ed

~ there is good reason for the reg1sters to have extended prec1s1onl:;ou='
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so that the resu]ts of float1ng point operat1ons can be computed
to extended prec1s1on and over a larger dynam1c range than the
-storage format admits. - This m1n1m1zes the effects of rounding |
for computatlons that are done ent1re1y in reg1sters, since the prlmany
V‘source of rounding error for typical computat1ons is then the 51ngle
round1ng error that oceurs. when going from extended prec151on in the t

reg1ster format to the precision of the storage fbrmat. A}so, i

overflow and underflow w111 h1rtua11y d1sappear because of the extended:;;g_u~ -

dynamic range of the reglster format Consequently the beneftt of ;h
‘the extended prec:s1on in the register format 1s that the hardware ;:'
all but eliminates undes1rab1e f]oat1ng po1nt aberrat1ons

| caused by unexpected round off underf]ow, and overf]ow._”;.;wi;‘  &‘ |
| Table 1 shows the minimum fte?d 1engths recommended”1n the f]oatlng
point reg1sters. The f1e1d length for the s1gn1f1cand 1nc1udes an

exp?1c1t h1dden b1t but not the sign of the smqn1f1cand.

. Jeble 1 -

Recommended Minimum field ]engtheffor register formats

Exponent Significand
ExtendedShort - 12 bits . 32.bits
- sExtended Long =~ 16 bits - 64 bits

‘There is no need for-extended;ShOEt'Tfthethe?dwere'provides Tong;
- there is no point in extended long unless the hardware proyidee
]ﬁngeprecision sterage formats-as-we11 ;
The standard is 1ntended to be comnat1b1e W1th the presence of

'_ a medest number - ¢f- reg1sters w1th extended formats
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Since the precision and.range'of numbers representabfe in regjsters‘
may exceed that of numbers repreéentab]e in_storege, it is possible to compute
results in registers that cannot be stored. Any attempt to'store'them results
in a fault condition that is handled e1ther by a- trap or by produc1ng a spec1a1

ent1ty (NAN, 1nf1n1ty, or denormalized number) as described }ater in this

- report. Shou?d a fau1t result in a trap, it 15 essent1a1 that the trap preserve

~ the information in the reg1sters s0, that the trap handler can make full use |
of 1nfbrmat1on‘1n the-reg1sters when the trap occurs. 0bv1ous1y, the reg1sters
shou]d be access1b1e to the assemb]y Tanguage programmer, and the format

- of numbers held in reg1sters should be documented so that the trap handler p
can rescaTe or perform a s1m11ar sort of computatlon on the reg1ster resu]ts

to enab1e a program to. proceed | The: exact reg1ster format and the operat1ons
permitted on the reg1sters beyond the use of ord1nary f]oat1ng point ar1thmet1c
are machine dependent and not fixed by the standard."

I1T. F1oat1ng po1nt ar1thmet1c operat1ons

The standard prov1des for -a guaranteed accuracy of fToat1ng-po1nt
ar1thmet1c operat1ons, and estab11shes the ruTes for rounding results.
The algorithm and 1mp1ementat1on of the several operat1ons are not
: spec1f1ed and are 1eft to the mach1ne des1gner, f1rmware programmer,
or systems software programmer to p1ck the most so1tab1e 1mp1ementation_
for each computer system _ _ | N

A1l operations requ1re that resu]ts be,rouhded-ih ‘

some fash?onwhegsver the-resu]ts of the.operatiOn”might'i
otherwise have more significant'bits than_can,be-he1d

in an extended. register or storage format..



-14~

There are severai schemes for roonding possib1e,:end the_sfendard orovfdes:
for four different schemes. One of these is mandatory, and the other three
are optional. If any of the.other three_are.imolemented; the mendatory
scheme must be the default rounding mode, and the other modes must be
selectable under program control. |

<  Mandatory rounding mode {Round to nearest or even number):

1. When rounding a result, 'the'rounding-operation must round
| to the nearest representabTe number if there is one. (P]us
o and minus 1nf1n1ty are not’ cons1dered to be representab1e '
“numbers when dec1d1ng whether to round to 1nf1n1ty or to
the 1argest finite representable number, 1nf1n1ty can be
generated on1y by overflow or by d1v1s1on by zero )
2.'In the event that the resu]t 11es m1dway between two repre- ‘
sentab]e numbers, the rounded result is the one wath the even .
s1gn1f1cand | | '_
3. In this round1ng mode the round1ng error cannot exceed % unit

in the 1ast dTg1t delivered.’

Tjéé Truncat1on——Round1ng b1ased toward 0
’ 1. When roundlng a result, the rounded result differs from the o
unrounded result only if the latter is not representable
2. If the unrounded result is not representab]e the rounded result
"is next representable number closer to 0‘(except for over/underf1ow).
3. The rounding. error is. a?ways 1ess than 1 un1t 1n the last d1g1t |
*de11vered | | ‘

Rounding, biased to positive direction:

1. UWhen roundingfa~resu3t-"fhe“rounﬂed?reenit”dﬁffersffromftheuunrounded
Cresult on1y if the 1atter is not representab]e
2, If the unrounded result is: not representable, the rounded resu]t 7

-'1s“the”neXtJmore*poSTt1ve-representab¥e~number.(or +w).

;Round1ng, blased to- negat1ve d1rect1on

1. ‘When - round1ng a result, the rounded resu?t differs from the



unrounded result only if the latter is hot'representable.
2 If: the unrounded resu]t is not representable, then the

rounded resu]t is the next more negat1ve representab]e number (Dr-eﬂt

The first rule, roundjng;to the'nearest or even representab1e~
'number, is a ru]e that creates as aeedrate'a resuTt as'any rule, -
and does not b1as the answers in a stat1st1ca1 sense. Hhen this '
ru!e 15 1mp1emented the round1ng errors produced hy a sequence of
fToat1ng-po1nt operat1ons can be beundeda‘ggyyj_so that ﬁor stable {f'r-'
\numerwca? a}gor1thms, it is poss1b1e to guarantee the accuraqy .;s;,ﬁ_e; L
 of the answers returned by the aTgorlthms w:th a txght error bound |
;'Moreover, th1s roundwng ru]e o preservesas many numerlcal 1dent1t1es
as any other unb1ased round1ng ru?e. Consequent]y, the standard provades -:_;
.'for this ru]e as the mandatory ru1e 1f only one roundtng mode 15  "‘
.1mp1emented and states that th1s rule 15 the default ru!e 1f
more than one is 1mp]emented | _' .

The other three ru]es are 1ncorporated here because they are usefu] o
in eertewﬂ contexts. For exampie, the rules tnat round toeard pOSItTJe .
numbers and toward negat1ve numbers are both used.1n 1nterva1 |
:ar?thmet1c computat1ons N1thout these ru]es, 1t may be too cest]y '
to 1mp1ement 1nterva1 ar1themt1c in a practtcal sense, SO we c1te :,
the rules as optional at th1s time; and expect them to become mandatony opt1onsr
if 1n the future 1nterva1 ar1thmet1c is 1ncorporated as part of
an extended standard . - 'f N
A1l of the round1ng ru]es use the same type of hardware | o
: for their 1mp1ementat1on, the 1ast three ru?es use no more 1nf0rmat1on

than that which must be prov1ded to. affect the First ruTe.'
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Before rounding can be,effeétéd,_the user must have specified the
Tength to which results will be rounded. The lengths :available
are short (24 significant bits}, Tong (5§-sighificaht‘bits), and/br

an extended length.
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In the descriptions of the e]émentary afithmetic operetions .

that follow, we assume that the results produced-contain significent

data to the right of the s1gn1f1cand fie]d and these data are

are shown in Fzg 2 Spec1f1ca11y, there is a guard d1th, a round

' b1t and a so- cal1ed "st1cky-b1t" . The guard d1g1t contalns the ,-':

next full digit of 51gn1f1cant data (for b1nahy radlx operat1ons R

provxded by this standard the guard digit is a s1ngle b1t for

dec1ma1 radix operat1ons of an extension.to th1s standard the guard

digit is a full dec1ma3 d1g1t) The round bit contaxns the next bit

!of 1nformat1on, and the st1cky-b1t is the ]og1ca¥ OR of all the b1ts lJ' 

in the representat1on of the result that re51de to the right of the . E

round bit.

It is usua] to conceive of the sticky bit as being reset"

prior to an arithmetic operation, and it becomes set if any 1 bit is

shifted right past the round bit, ~  whencethe name "stickybit.”

Arithmetic operations:

. Addition and subtraction

K

Compare the exponents of the two addends, and sh1ft the:
51gn1f1can741th the sma11er exponent to the r1ght by |
by an amount equal to the dlfference in exponents. Vf
Add or subtract the s1gn1f1cands.'

-

If the. unsh1fted number was. norma11zed before the operat1one :

then norma11ze the resu1ts, OthETWTSe do not ncrma]ize.-

_-Norma11zatﬁ0n 1n this case 1nvo]ves 1eft sh1fts (or the

equ1va1ent A left shift of a s1ngIe bit- pos1t1on moves
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‘ - _ Guard = Round  Sticky
Register (Extended,long or short} Digit .Bit Bit

Fig. 2 The guard digit, rouhd bit,‘and sticky bit.
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the guard digit‘into thé eﬁtended régisﬁeré the fbund bit 
“into guard digit, and moves a 0 inté thé round bit;A The’
sticky bit is jeft unchahgeq‘by_a‘ieff shfft,’ Normalize
the results after rounding if the rounding pfoduceé an-r‘ ‘

unnormalized result.




With addition defined as above, the resu1ts'o%_an addition:

| may have to be shifted one digit;to the right tf the 3um' E

of two numbers is too 1arge to be represented by the larger exponent.
This r1ght shift and the r1ght sh1ft used to aTIgn the s1gn1f1cands o
are the shifts that set the contents of the guard dlg1t and round |

and sttcky bltS R R * The case for wh1ch the ,‘

result is half-way between two representab]e numbers is N .
‘1dent1f1ed by a guard d1g1t of 1 (1n b1nary rad1x or 5 in dec1ma] rad1x}, s
and a round bit and st1cky b1t of 0. To round in th1s case to the -

nearest even number, 1nspect the 1east s1gn1f1cant b1t of the resu]t

1f this is O then leave the s1gn1ficand a1one. 0therw15e add 1ﬁ | o
Mu1t1p11cat1on S SRR

1. Multiply the sig.nif-*icnnds toobtain a resu1t that oocu‘pies
~at least the full prec1s1on of the extended register plus an
overf1ow b1t at the left and guard d1g1t round bit, and sticky
bit at the r1ght The sticky b1t is set on!y if the true pro- |
duct would have non-zero bits to the r1ght of the round b1t h‘:_ a
2. Add the exponents of the operands minus a bias to produce a -
result exponent.h | | s .
3. The product-of the'SigniFicands'oou1d be 2'or‘targer 'nlmost 4.
- If the product of the s1gn1f1cands 1s too large to represent (i.e.
Targer than 1.11111. 11112), sh1ft the s1gn1f1cand to the r1ght
one digit and reduce the exponent by 1 \ |
4. Round the resu]ts to the pregpec1f1ed prec1$1on and renorma]1ze 1f :
This szﬁg;erﬁglds for norma11zed and denorma11zed numbers both The =
product of two denormalized numbers is surely_denorma11zed (usua]iy 0), and
this will be the resu]t.prodnced here; Thelproduct_of a normalized number'

sandadenormalized number-may -come outidenordeized;%butmsince*no?left-shifts
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| ere'provided in this algorithm, the product could be returned ae‘e
denormalized number in this instance. No‘new "significant” figures are
introduced as a result of operating with e denormaiized'number.. No
partécu]ar hardware‘need-be introduced to procees.denormaiixed‘numbers'
's1nce the algorithm hand]es both normalized and denormaltzed numbers
in a un1f1ed way. s |
--——~——-————-D1V15m"f _. o . AN S .
1. Inspect the d1v1sor to determxne 1f the d1v150r is norma11zed
- or denorma11zed _ If denormailzed and the first dig1t after the
ipo;nt of the s1gn1f1cand is- 0 termlnate the d!v1saon 1nd1cat1ng
'an invalid operatzon fau1t and produc1ng a NAN 1f the fault trap _
is deact1vated If that f1rst dtg1t after the po1nt of the denor- _‘t;
| ma11zed d1v1sor 1s not zero, 1t is opttona! as to whether the op—
erat1on shou]d proceed or trap at thts p01nt., It is p0551b1e df
to proceed and generate 1eg1t1mate results if the d1v1dend'
's1gn1f1cand is not too b1g | ' h “h_ N
..2..The leading d1g!t produced by dlvzdxng the d1v1sor 1nto the
hpd!Vldend can be ejther O or 1. IF the d1git 13 a 0 the sxgnw«-‘
flcand of the quotlent is sh1fted 1eft once upon term1natlon of the -
operat1on and the resu?t s exponent 1s decremented by 1.
3. The final exponent is the exponent 0f the d1v1dend mInus the
‘.exponent of the d1v1sor p0551h1y W?th a decrement from Step 2
us a blas P sl
- If the d1v1dend is denorma11zed ijfmtf‘ and the d1v1sor s normallzed_: ]
the quotient ‘may be denorma11zed because the a1gor1thm does not provide more B
than one left shift of the s1gn1f1cand to renormalaze. Consequently, _
the -algorithm correct1y handles both norma11zed and denorma11zed numbers, andh

the only spec1a1 hand11ng is-in the f1rst step where the d1v1sor ts tested‘

to determine if . it"' s norma11zed JL,. - ;‘ o —— — X
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or not. But this test must be built into thé'divigion a19eri£hmm_‘
anjway-to determine if the divisor is-b “The ‘only p0551b]e o
difference in hand11ng d1v1s1on by 0 versus d1v1s1on by a denormalized
: number js the NAN that is produced as a result of the operation. ‘; |
In both cases an appropr1ate f]ag must be set. | A o
| The standard prov1des spec1f1ca73y for a f]oatxng po1nt‘-

square-root operat1on because :it can be 1mp1emented at a cost -
 lappr0x1mate1y equa] to the cost of a d1v151on a]gor1thm. The .E.'
square root is usefu? ',1 in a]gor1thms for 1nverse tr?éonometelc and_'_"

_hyperbo]1c funct1ons, the error functlon and other s1m1]ar functwons.v

N1th an accurate and fast square root funct1on 1t is posszb]e to

'create smooth approx1mat1cns to the transcendenta] functxons g1ven here” ="'""

“and to others at a computat1ona1 cost approx1mate1y the same as

or better than the costs for less des1rab1e approxamations 1n use today. 7

Approx1mat1ons 1nvo]v1ng the square root are not common]y 1n use -
cadaj 1arae1y bacaus h snuare root is not a pr.m1t1ve ooerac*on
'and is too cost1y to compute in the context of an approx1mataon
.a]gor1thm. The spec1f1cat1ons for the square root are given |
beTom: : ‘. _ o | ,
Sgeare root . | o _ . |
1 If the number is negat1ve, trap 1f a trap 15 enabf a‘, o
otherw1se set a flag and cont1nue | ] - |
‘2; If the number 1s p1us or m1nus 1nf1n1ty, and the mode
of computation is the progect1ye mode,_then‘return:the

number itself. 'If the mode is the affine mode, then

a fau]ﬁ trap.1$£2na6|ed 5 whenever Ihe operand.isumihus
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infinity, and shoﬁTd‘return plus infinity if the operand
is plus infinity. o '
3, If the bperand is plus-or-minus'zéro; the sQuare.roof returns ”
| the operand. | .. 7 | o |
4, If the operand 1s a denorma]1zed number, the operat1on '
returns a NAN 1f the fau1t trap 15 1nact1ve, and traps otherw1se.‘::7'
5. 0therw1se return the square root of the magnitude of the S
operand(?ccurate to within & ha]f un1t in the ]ast pIaceam <}-maAb ei
The spec1f1ced accuracy of the square-root is eaSTest to accomp11sh by
'cemput1ng the square oot by a d1g1t by~ d1gwt a?gor1thm s1m1]ar to the B
d1v1sxon algorithm. To be of. max mum use as a pr1m1t1ve operat1on, |
it 1s abso]ute]y essent1a1 that the square- root be computed to the
specified accuracy over the range of numbers. 3

The MOD funct1on

The standard prov1des for the computat1on of X MOD y since
this can be done easily at the pr1m1t3vn Ievels of COTDUEaLTOn by
smalil changes\1n the_d1V151on algorithm. The operat1on of the funct1on |
-is as follows: | | | | ‘ ‘
1. Fol]ow the ru1es for the d1v1s1on algorithm tc determlne -
._ whether or not to 1n1t1ate the computatxon* o | |
2. Carry out the a]gor1thm Just far enough to develop al] integer ;
d1glts of the quot1ent, a11ow1ng overf?ow to occur to '
the 1eft Return the‘quotlent and remainder. _
3. The sign of:the~quotient is'the'sign 6f X[y. 'The.ﬁign
of the rema1nder is the s1gn of x. Tﬁe'magnitude'of-

the rema1nder is a1ways 1ess than y s magnTtude

*If traps are dlsabled the quot1ent produces a. NAN rather than 1nf1n1ty,
and x MOD O produces ‘a NAN. ' : e : :
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This‘a]gouithm for computing x MOD y-guaranceesuthat‘the
MOD function is a periodic funct1on of X with. perwod y exact?y
(no roundoff). - u" o This behav1ur is requ1red
to obtaTn accurate approx1mataons tx:exponent1a1 and tr1gonometr1c ﬁ
functlons. Note that th1s def1n1t1on prov1des for range reduct1on :
in tr1gonometr1c funct1ons hy perm1tt1ng the use X MBD p1 as a va11d operat1on fi
- with pi : as accurate an approx1mat1on tow as wzll serve as a d1v1sor.:hAf
| At th1s point the d1scuss1on of the e]ementary operat1ons S
has been comp]eted Before term1nat1ng th]S section we exp!ore.c
'some of the 1mp11cat1ons of the spec1f1cat1ons g1ven here.-f .hf.‘c
The guard dig1t round b1t and st1cky b1t guarantee that j:“:l
the results delivered are as accurate as poss1b1e, and the e
extended prec1510n of the registers further reduces errors from c
rounding. Because overf]ow in the extended r691sters w111 be extreme1y
' 2 {e except Tor 1nvaiwd ooer3c1orb cau:ed bj d1v1s1cn bj uero),
h the cost of traps to handTe recoverab}e overf1ow cond1tzons w111
be almost neg11glb1e S1n1?ar1y, underflow w11} be extreme]y
rare, but shoqu it occur the denorma11zed number scheme prov1des .
an accurate and graceful way of hand11ng denormal1zed numbers. .
“hddition and subtract1on W1th denorma]1zed numbers is hand]ed
~in such a way that the 1055 of 51gn1f1cance due to denerma]1zat10nls g1veh
E:r chance to -vanish- durwng subsequent add1t10ns IhrSmmeans=that_any
"denormalazataon | ' CoLmay well van1sh after a few further 5 |
operat1ons without any trap hand1er or spec1a1 conSIderatxens |
‘that «greatly “increase the: cemp1exmty and: overnead OF ¢ the eperatzons.i

“The round1ng scheme of round1ng to nearest representable N
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number or to the nearest even 1n case of t1e provzdes an uanased
- and accurate rounding scheme. It also prevents "dpift" in representatzons
that are produced from other rounding schemes. Cons1der, for examp?e,

a computation that produces X)s Xpsee from the fol1ow1ng formula.

‘,x1-=(x1-1+y)-y, y#0

where Xg is a f1xed given 1n1t1a1 va]ue., Some round1ng schemes that ‘
: have been 1mp1emented W111 cause the va]ue of x 's to slow]y 1ncrease -
| away from zero up to a term1na1 va]ue when the computat1on 15 1n1t1ated o
mth‘x0 = 0 With the round1ng scheme prov1ded here no drIft 1s't
observed past x1 | ; t ' _

B In def1n1ng the operat1ons we have 1nd1cated that fault condttlons
.must be recogn1zed in spec1f1c 1nstances Because the regzsters o
‘use extended prec1s1on, correct computat1ons w1th norma11zed numbers
w111 run v1rtua1]y free of- traps when generating results in the |
reg1sters " The computat1or5 may, however, create numbers for -
-which no storage representat1on ex1sts. It is at th1s po1nt that :
| the traps are generated by means of a trap on an 1mposs1b1e o
conversion from reg1ster format to storage format A trap hand?er . |
can take over at this point and rescaleAthe data.as necessary to
make representation'foﬂstorage:poéeib1e;'rByrdeférring'theaca11-oh .
the trap handler until the resu]t is actua]]y stored the overhead
'assoc1ated with overflow and underflow can be d1m1n1shed substant1a11y and
may we11 disappear from a1most all computat1ons } o |

1v. Binary /- dec1ma1 convers1ons

The standard prov1des for 1nput and output S0 that the

interna] storage format can be put into a form 1nterpretab1e;
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outside fhe computer The process of convers1on is greatly s1mp¥1f1ed
- by def1n1ng it 1n terms of s1ng1e pr1m1t1ve conversion operatzon o
from blnany to deczma] and-a single pr1m1t1ve convers1on in the
reverse direction. A1l other types of covers1ons are der1ved from
these. _ | ‘ ' |
Let the externa1 format for decimal. encod1ng of a floating
point number/be D. DDDDD 10E . where the 1ead1ng dec1ma1 dlg1t IS
‘nonzero for nonzero quant1t1es Here, for exampTe, the externa1
format uses 6 d1g1ts for the 319n1f1ca”d The length of the 51gn1f1cand is a
var1ab1e quant1ty whose bounds are determ1ned from the prec1s1on (short or 1ong)
of the 1nterna1‘storagg.format. (The max1mUm env1saged 15 ? -5191tsfor short 17
d1thS for Tong.) Proceed1ng w1th this 111ustrat10n,r B fyf;_: | |
/ Tet I be represented by the 1nteger DDDDDD whose d}gxts fonn :_
'the s1gn1f1cand of the number, and note that Iis an. 1nteger between 105
\“« and 10% - 1.  The va1ue of I can be comouted dmrect?y From X, and
n fact, I is the - integer that sat1sf1es o {
I=10.57E.-x e _.
since L
Conver51on from 1nterna1 format to externaT format 1s then s1mp1y
a matter of computing the value of I and E, g1ven the number of
d1g1ts to produce in the externa1 format for the mant1ssa. The :
mspec1f1cat1on of “the-cohversion process “is then A
1. To produce an external representat1on W1th v mantzssa d1g1ts,

compute E “E_]oglo Kl' us1ng b1nary f1oat1ng poxnt ar1thmet1c with the

1argest ava11ab1e prec151on

w=E-1

4. Compute. I-= 10 -.xeequndedaeo tneeneanest integer.
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-3. Check to see if 10w 1 =X 10 - 1. If not, adjust E and recalculate I.
(This may be required 1f round1ng errors ip. 109 and mu]t]p]ytake 1
out of range ) ' :
4. Convert the 1ntegers I and E to strings of dec1ma1 d1g1ts '
'_. in external encodings u51ng a b1nary 1nteger to- dec1ma] .
1nteger conver51on algorithm, - | .
The procedure for float1ng point converswon requ1res a tab]e of powers of 10
in floating-point representat1on, a. Iogar1thm aigor1thm (whose \3'Vf:‘3{,§" |
accuracy is not cr1t1ca]), an operation for tak1ng the 1nteger | o
part of f]oat1ng~po1nt quant1ty, and an operat10n for prcducxng )
' the nearest 1nteger to a f]oat1ng po1nt quantxty. N
The table for the powers of 10 Tf stored 1n memory must
conta1n suff1c1ent prec1s1on to be useful for the extended
,prec1s1on of the registers. Spec1fxca11y, the powers of 10 table
significands
must have/ - .and exnonents whose ]engths meet the mlnTmum
lengths given in Table 1. Th1s 1mp11es that the powers of 10 _
tabie, if storad in memory, 15 stored 1n @ format that is different
from the standard storage formats, because ltS prec1510n exceeds [:‘
the precision of the standard format It 15presumab1y stored 1n-‘i
a format that can eas11y 1oaded d1rect1y 1nto the float1ng~p01nt
' extended reg1sters or is in a form that perm1ts the extended
i prec1510n mu1t1p11cat1on to be s1mu1ated easx]y._For convers1on oF externa]
dec1ma1 numbers to 1nterna1 b1nary numbers, 1t is most conven1ent -
if ‘the mantissas and exponents of the entr1es for the powers of 10 table
be he?d in- separate words. | : d
To produce an 1nterna1 representat1on from an external one,

given T and E in dec1ma] “from the externai format perfbrm the |

following steps:



1. Convert I from external dec1ma1 1nto an 1nterna] b1nary
encoded integer (wh1ch we denote as i).

*2 Convert E from external decimal format 1nt0 the 1nterna1
' b1nary encoded 1nteger e. ' ‘ '

3. Multiply i by the s1gn1f1cand of the e th power of 10

" 4, Obtain the s1gn1f1cand s by norma11z1ng the quantity from Step 3, N i

and determ1ne - the number of b1t pos1t1ons sh1fted '
" in order to norma11ze ' ' |

5. Convert the 51gn1f1cand 1nto a f]oat1ng poxnt representat1on
 derived from the significand and an exponent determined from :

‘the number of shifts that occurred dur1ng norma11zatzon.
(The 1ead1ng d1g1t of the 51gn1f1cand w111 h}de in the
o h1dden b1t dur1ng th1s operat1on, unless the - number is not
' representable.) - SR |

6. Add the exponent of the g?h

power of.io to.the exponent'
of the representation[of X. | | '

This method of conversion is quite suiteb1etten.tehles ef the
powers of 10 stored in memory, with exponents separated from mantlssas.
..Essent1al1y it requ1res the mach1ne to s1mu1ate extended prec1s1on :
arxthmet1c as performed in the reg1sters but to do so with. ent1t1es
from storage. | | |

It is equally. sat1sfactory to 1ncorporate.a pr1m1t1ve operat1on _
that coverts a b1nary encoded 1nteger into 1ts equ1vaient f]oating poznt '
'representat1on in an extended-regnster =0nce 1n th1s formet the
Ffloating- po1nt 1nteger ‘can ‘be mu1t1p11ed by the e power of 10,

if that power of 10 can be 1oaded into. an extended reg1ster with

fhli_prec1sxon.
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The implementation of the powers of 10'tab1e need not store
every power of 10 to extended precision, ‘For example, the table
:might store selected oowers of:IO to full precision and compute _

the remaining ones by multiplying powers of 10 stored in the

10 - , 420

the table.. , for example, it were conven1ent to store 10 , 1077,

1030, .e.s and 101 102 ..,109 then 108? cou]d be computed as

80, 197 = 87 [Th e are taster wags usin horter tablesiThe S"’ahﬁdrtﬂ
10 10 10 er _J skouf& specehy one of Hhem for “"'f"’"""’}f)

' Among the pr1m1t1ve operat1ons usefu1 to support convers1ons .
are operat1ons that access the exponent f1e1ds and s1gn1f1cand flelds
of extended‘reg1sters as separate entities. There should be an
-inétruction‘that_converts a binary fixed—p01nt 1nteger into.
a f1oating-ooint,integer, conversion between short aud long
“ floating-point precision,and a means of takihg the integer.part
" of a floating-point number.. The latterréhoutd'be.oeffned as
othe operation that=trunoates doﬁnuard toward'negative infinity
From this operat1on it s simple to construct the operation that -
.truncates toward 0 when fract1ons are discarded, but o1ven the: -
latter as a pr1m1t1ve, 1t is very d1ff1cu1t to construct the former.
- To guarantee that each binary f1oatiugfpoiut.humberfcan_ .
be converted into'a deCtma1.number and.reconverted into the |
same b1nary f]oat1ng po1nt 1nteger, we' requ1re that convers1ons
be capable of produc1ng 9 dec1ma1 d1g1ts for short prec1s1on
- and 17 decamaT d1g1ts for 1ong w1th th1s prec1s1on and conversion -
accuracy of half a un1t in the 1ast p?ace numbers w111 not dr1ft

after repreated convers1ons to anifrom f]oatjng-po1nt.
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IV. Treatment of special entities, faults, and traps

- This section contains the specification of tﬁe eoeciai
considerations of the f]oatzng -point. standard 1nc1ud1ng
 the hand]?ng of NAN S, 1nf1n1t1es, fau]ts and traps.
| Inf1n1tz _ 7 | ‘
~ There are two 1nf1n1t1es p1us 1nf1n1ty and m1nus 1nf1n1ty,‘e-.
- and two different ar1thmet1c modes in wh1ch to deal w1th them,
the .affine mode and the proaect1ve mode In the affine mode, .{:i_‘.
| the two 1nfzn1t1es are dlfferent entzties and are d1st1ngu1shab1e. . ‘
In projective mode, the two 1nf1n1t1es are 1nd1st1ngu1shab1e ar1thmetlca11y5
desp1te that they have d1st1nct representat1ons. Ar1thmet1c operatlons ‘
are def1ned such that when an operation produces an 1nf1n1ty 1ts
sign is determ1ned by the conventlons required by the aff1ne mode.‘-'
Since the sign does not matter for the prOJectlve mode, there |

is no prob]em introduced because of- the s1gn : : '
A“ Gw%ﬂfjﬁf lﬁvuiU‘mC' ;n-{'rm%u is {Jﬂf-', same. %/‘ bottb. 4 a%fune W;c )oroJec:h wf mﬂa’ea ;’xce/ng‘

y‘/‘? h"() w‘(d("‘l'ﬁ ’1"}/ }'7[‘}" #/1‘.9-5 f'vlra‘? /"Lé:f? qﬂf(‘f} '5)“ \)brbﬁf’(r"’ﬁ?? 3’/ ’f’%;?."?éf'(J “;',7"5‘. he) /017'3("’*' ~>://?».J.r

Tn #he "M Pafim’, mc”fe et /Vn?fb) e yf“ﬂf’f“ﬂ‘?f‘ »U/w/é’ 72 7%0. &f;-‘:,;é ;om/{i 7%: ;zf‘é’&’/ L’ /s

T

J'H//’mrc anhe .. "jw Aoy r{;/?;? Zlo defnl‘iar o
The MAN is 1ntroduced because in the progect1ve mode we cannot
tell if e1ther operand is pos1t1ve or negat1ve,_so that the resu]t
-has no meaning. | _ | o ‘ ._ '__ | “ _
‘The results_of-manipd]ating 1nfiq}ies in.comofoation withdfﬁeméelveee ,
'and.wito other.entitiesmare:sdmmerized5dnethe-tab]es in thiS'setﬁion. B
In genera1 “the projective c]osure mode shou]d be the defau]t optxon 3 ;
for arithmetic, but both the proaect1ve and afane modes must be
available.’ STnce “they on]y difference: concerns add1t1on, subtract1on, & compar1so

of 1nf1n1te operands, the cost -of prov1d1ng both modes shou]d be 5mall
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As an example of the use of the affine mode consider
the expression that occurs frequently in hyperbolic computations:

f(x) e -1

- tanh (2

X
e” + 1

When computed in th1s form, for 1arge X the numerator and denom1nator

both overflow, and the funct1on has no computable va1ue.. However, o

the funct1on s often rewrltten in the form - i |
} 2

- X

A‘_'f(x) = .
S e +_1;_]_

where now fhe secondrferm goeé to Orfor 1ergeox and the.fuﬁoifoo. |
approaches 1, For th1s funct1on, a programmer takes advantage of
- the standard by setting the mode to affine mode and d1sab11ng
the fault for overf]ow For 1arge X the 51qn of x matters cruc1a11y
in th1s computat1on Shou1d X overf1ow and be replaced by 1nf1n1ty,
then denomwnaoor becomes 1nf1nwee if x is ptus 1nf1n1ty, or becomes N
1 1f X is minus 1nf1n1ty Clearly, we have to d1st1ngu1sh between
_ plus and minus 1nf1n1ty in th1s case, and by so doing and by fol?owxng
the rules for comb1n1ng 1nf1n1t1es, f(x) can be computed correctly (but fgr round
for every X 1y1ng in the. range of representabTe numbers without the
.use of traps. R k.‘ 7 ,‘

To g1ve an equal]y va11d examp]e of the use of the proaect1ve
c1osure, consider the- cont1nued fract1on expan51on that 15

frequently encountered in numer1ca1 approx1matxon algorithms'

&
flx) =X ¥b+ ¢

x+d + e .
. x+ f + s
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In this case, the sign'of“an'infinite ihtermedieté denomoninator
“makes no ‘difference, for once using it as a_divisor,'the quotient
is 0.~ | | , | '. . |
There is an inherent danger io réplacing ]orge quaotiﬁfes'by 
a sing]e infinite quantity without traoping. Informatioo‘must '
: be Iost when mak1ng this replacement That 1055 of 1nfbrmat1on
may be extremely damag1ng when us1ng the 1nf1n1ty Tater in computattons;.,e?‘li
Cons1der,for examp]e, the ca}culat1on of’ (x - y )/z where i

2 . overfiow 2

X" 15 just a 11tt1e b1t greater than the/exexthresho1d oy Just

a little 1ess than the overf]ow thresho]d and z is a Iarge quantIty
about the same " as the difference xz yz.' Then
the_quctieﬁt_hae a:r, Value,;,' ‘ f near unity But when x2
orerrowe and is replaced by.pTUS 1nf1n1ty,.subtracting‘y2
still glves ‘an answer of infinity, so that upon division. by

z the resu]t returned is stiil. 1nf1n1te.i There is no way ‘

ta eliminate this tvoe of prob1em U1tPOUL rescaTwrg +o preven+

the loss of 1nformat1on 1ncurred when-x2

is rep]aced bj 1nf1n1ty. |
A Consequentiy, the standard provides both for the active trap ‘“

on overflow mechan1sm to hand]e unforeseen overflows and for the

_d1sab1ed trap mechan1sm to perm1t computau1ons to proceed with

“infinite quantities when the programmer knows that computatIons

will give correct results in this instance. Nevertheless, the -

,programmer is urged to scale his- problem o] that underflows rather '

than overf]ows occur, because the StandaYTicopes w1th ' underf1ows smooth]y
through the use of denormalized numbers in which computat1ons can
ﬁﬁontwnue.wx%haessenmial]y;noaloss:ofsprecrsTonmmnumany.cases.

Aswa-fina?_examp]eoon'tthuse of infinite qoantities; consider the
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computation ' o B . o d‘:‘ lﬂ
. L ) _
| z=x-y
t.='y-x”
1/z + 1/t - SR TR
If 1t were not for the f1rst equat1on and X differed from,y, the
last quantity wou1d be a we]] def1ned zero. However, w1th X = y, z. and t
are both the Same zero, and in aff1ne mode the resu]t obta1ned from the ﬁ,
| 1ast equat1on wou]d be pTus 1nf1n1ty “In proaect:ve mode, the -
. and a NAN should be returned. . -
answer gbtained is undef1ned[ It 1s rather 1nterest1ng that except :
at x = y, the funct1on def1ned by the 1ast Tlne 15 evenywhere zero N
“becausevz and t are negatlves of each other. However, at x ‘yhiVﬁﬁﬁ"L'
both z and t are zero, so that at th1s p01nt there 1s a SInguTarity
1n the value returned for the function." |
NANs | |
| Tab?es in this section show when tdﬁgehérata tdﬁs and how
to propagate them Because the 1nterpretat1on of a NAN is 1mpiementat1on N
'dependent, the standard does not provide a spec1f1c format for the ' N
's1gn1f1cand of a NAN The standard does prov1de genera? ground |
rules for the 1mp}ementat1on of NANs . e - e ) |
The purpose of generat1ng a NAN is to be abﬂe to determlne the"‘ _
po1nt of or1g1n and the reason for ortg1n: of the NAN- Thts Infbrmatlon T
in encoded 1n the s1gn1f1cand ‘When two NANs are comb1ned hy an | |
ar1thmet1c operat1on the operat1on s1mp]y propagates the "earlier®
of the two, which by convent1on 1s the NAJ w:th the algebra1ca]!y lesser value

when the bit- str1ng 15 1nterpreted as a’ s1gn magn1tude number._ .



To ihplement an encoding of error conditions in NANS, an implementation
may follow any one of a number of consieient policiesf Unitie]izedl
"‘Storage shoold be set to NANs whose siQnifiCands are numerically less
than those geserated by arithmetic compotaﬁionS' NANs generated
ar1thmet7ca1ly should conta1n encoded fields that give the nature
of the fau1t and the program counter at the po1nt of fauTt |
" For short prec1s1on, the b1ts ava11ab1e are too few to do th1s properiy, _
| S0 that an abbreviated po1nter to the program counter may be requ1red
| If fau]t 10gg1ng can be implemented, the NAN generated hy an L

ar1thmet1c operatlon can have 1ts fau1t number 1nserted 1n the |
-sxgn1f1cand -and 1nformat10n summar1z1ng the fau]t placed in a =
fault table at the pos1t1on spec1f1ed by the fau1t number.”r

The implementation of this type of behav1or is about equa] to the
- cost of Togg1ng faults 1n error~correct1ng memory, and is essent1a!]y
free if the memory-fault 1ogg1ng.mechan1sm is usable for th1s_
purpose. | e

'Faults and traps

A full specification of_fauite and traos-appeereijn the taoles‘
in the appendix.’ The QeneraT coaracteristiCS of the mechanieme aré
that the traps can be enab]ed or d1sab1ed under program contro]
-0 that a programmer who knows that the hardware w1]1 handle the
“fault condition properﬁy need not prOV1de a trap hand?er for the _.“
faults. However, the 1nformat1on.that-fau1ts occurred shou1d set_i.
‘%sticky"'flags“so“theeprogrammer can tesciafterﬁerdS'tO*see if -
an unusua] cond1t1on arose, and was corrected by the PTngﬂm-
R "sticky" flag is:a f]ag that the program resets pr1or to a computat1on and_

once set by ‘a ‘failt’ cond1t1on, vemains set throughout the cqmputat}onunt11 Tt
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:it is reset by the progrém The ideal 1mp1ementation of a st1cky f1a§;has not onl
-a st1cky bit to 1ndlcate the occurrence of the flag, but two | |
registers whose ]ength is equa] to the program counter ]ength

| The f1rst regzster-is set w1th the program " counter at the po1nt
the st1cky b1t is f1rst set and the second register 1s reset :
" to the va]ue of the program counter at each subsequent fault of
that type. Nhen‘a computatTOn tenn1nates, the programmer can _5 ;"

f1nd the first and 1ast occurrences of the fault by exam1n1ng

the two registers

~ The stahdard‘provfdeé for an inexact flag that:is'
~a-condition bit set ofter-'after each f?oating-ooint operation
in which round1ng may occur The 1oexact flag is-Set to l'if
reported result 1s not equa] to the true resu]t otherwise
_,1t is set te 0. IT any of the quantitles guard d1g1t, round b1t,

or st1cky bit are.l pr1or to round1ng, the inexact f]ag is set.
The. 'wexact )C{aj “alfows (ov:?—mfejer calecdations Yo be

, P“'F"""_‘ej fﬂ Yhe _Hoa‘iw\j Poznf reg hers un‘Hf'ou'f‘ ‘muomal'ces ;
sz A reven = even" -'Causﬂafé Mf@jersdrucacnj
oo long, 30“3 Cwnnotiied . This Cwitl fe usefl tn
CoBoL programs. - Ovher ﬂ»Wa.-)‘-nans Cof the inegad
flag nvdve gereratior of erica fest data, and
ntewal arcthmedis | ' ' o



V. S mnary

The fioatxng p01nt standard prov1des for standard storage
formats, minimum bounds on the prec1s1on of reg1ster formats,
a specification of the accuracy of the f1oat1ng point operat1ons'.
of add1t1on, subtractTOn, mu]t1p11cat1on d1v1s1on, square root
and MOD, a spec1f1cat10n of ‘the b1nary/decnma1_convers1qn process,-
and detailed discussions of the'freatment}of épgc{aT eﬁtities; |
traps, and faults. The standard provides f6r évd1ufion'to decimél |
“internal representatibﬁ-and'fOr intervé1 ariihméfic No manufacturer get
~ has imp]emented thé-recommendations-as described'here._ Many 1mp1ementat1ons
that fa11 the accuracy and pre01s10n requ1rements of tﬁe standard |
have through the1r use shown that such fa11ures are cost1y and unnecessary
' The implementation of the requirements of the standard prov1de
for floating- operat1ons that are done as correct1y as poss1bTe
 w;th a minimum of overhead due to spec1a1 cond1t1ons to the extent
that the state~of—the~art can provide today. The cost of a standard
'f]oating point 1mp1ementat1on, be it in hardware, f1rmware, or software,

is compet1t1ve with the 1mp1ementat10ns now in common use that have

far 1nfer10r'characteristjcs, ) ' o ‘ s

~Appendices
The tables that f0110w show the resutts of arithmetic operatidns,
condition code settings,andptrap-dctidns forsa11fcombinations,of

operands.
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