
-

I

J

IMPLEMENTATION Ot ALGORITHMS

PART I

Technical Report 20

W. Kahan

1973

Lecture Notes By

W.S. Haugeland and D. Hough

Department of Computer Science
University of California

Berkeley~ California 94720

1973

-

-

ABOUT THESE NOTES

These notes consist primarily of transcriptions of lectures given in

the fall of 1970 and the winter of 1972. For publication purposes they have

been somewhat arbitrarily divided into two parts. The first part contains

basic material while the second discusses some problems arising at a slightly

higher mathematical level and includes some appendices.

Within parts the order is roughly the order of presentation in 1972,

but the reader need not feel bound to read the topics in the order presented.

Cross references between sections are indicated thus: [l].

There is some duplication of material from the two sets of notes which

were merged to fonn the present parts. We have taken the course of not

removing duplicate material whenever it seemed possible that something of

value might be lost. Furthennore, another technical reportt discusses some

of these same topics in less detail, and can be reconmended as a su111Tiary.

0. Hough

tw.· Kahan, "A Survey of Error Analysis," Computer Science Technical Report #4,
University of California, Berkeley, 1971.

-

--

CONTENTS

PART I

0. Introductory Remarks: Motivation and Outline

1. Significant Digits, Cancellation, and Ill-Condition
2. Rules For Floating Point Arithmetic
3. Cost of the Rules
4. Arithmetic on the CDC 64001

5. Software Conspiracy and the Cost of Anomalies
6. Execution Time Errors
7. Proof of a Numerical Program -- the Quadratic Equation
8. Modifying the Quadratic Equation Solver to Avoid Unnecessary

Overflow and Underflow
9. How Can We Add Up a Long String of Numbers? Standard Pseudo-

Double Precision Algorithm
10. How Can We Add Up a Long String of Numbers? Magic Constant

Arithmetic
11. How Much Precision Do You Need -- In Genera1?2

12. Interval Arithmetic
13. What Claims Should We Make for the Programs We Write?
14. Which Base is Best?
15. Base Conversion

PART II

16. An Eigenvalue Calculation Demanding Little From the Hardware
17. How Much Precision Do You Need to Solve a Cubic Equation?3

18. How Should We Solve a Non-Linear Equation?
19. Construction and Error Analysis of a Square Root Routine
20. Students• Report on Improved Versions of CDC SQRT, CABS, and CSQRT4

Appendix I. Students• Report on Arithmetic Units in Various Machines5

Appendix II. The RUNW.2 Compiler for CDC Fortran6

Includes paper by F. Dorr and C. Moler.
2rncludes report by students.
3rncludes report by students.
4B. Bridge, B. Deutsch, and R. Gordon
5sy students.
6 Condensed from report by D.S. Lindsay.

-

-

-

-

0. INTRODUCTORY REMARKS: MOTIVATION AND OUTLINE

An Example for Motivation - An Anomaly

Consider a F0RTRAN program that contains the following statements:

X =

y =

IF(O .LT. X .AND. X .LT. 0.1) 60 T0 l

l iF(lO .. LT. Y .AND. Y .LT. 100.) G0 T0 2

IF{P .EQ. 0) G0 T0 3

3 CONTINUE

It is possible to reach statement 3 on the CDC 6400 even though you've

checked for x and y not being zero. How can this happen? Is there

anything wrong with it? Which laws of arithmetic can you expect a computer

to obey?

Typical Difficulties

l) There's the problem that only a finite number of numbers can be

represented on the machine.

2) CDC supplies something called 00 and ~ (indefinite). Are CDC's

rules in handling these reasonable? Is it reasonable that you should.

get thrown off the machine if you try to use these numbers?

3) We'll discuss how hardware and software design influence how careful

the programner has to be, and what can be coded around economically.

4) You are to write a subroutine that will solve for the roots of a

quadratic equation, given A, B, and C. The equation is
2 Ax -28x+C = O; A, B, and C are single precision, floating point.

0-1

numbers. The roots are to be accurate to within a few units in the

last place, or if a root is out of range, there should be an appro

priate message.

5) How can you solve f(x) = 0, where f is supplied by some subroutine?

Is it possible to write such a program, given an 'a' and 'b' such

that f(a)·f(b) < 0?

If you use the binary chop method (bisection) it is costly. You

have to compute

C A+B
= 2.0

and on some machines C need Dot lie between A and 8. (This is on

octal or hexadecima 1 machines.) What if A+ B overflows?

6) Think of Z = X + iY and wanting to compute CABS(Z) = /22+ v2

If X or Y is about half way to the overflow threshhold, the

square will overflow (same for underflow). It would be worse if a

power greater than 2 were involved.

So you try the subterfuge:

CABS{Z) = ABS(X)*SQRT(l + (Y/X)**2), IXI ~ IYI

Then you only get an overflow message when you do deserve it, from

the multiplication between ABS(X} and SQRT. But you might get an

underflow message, which doesn't interest you, except that you'd get

thrown off. Should that happen? If you turn off the message, you

might miss an important underflow. Should things be this way?

7) Computation of elementary functions: ln, sqrt

Someone was computing:

0-2

-

SQRT(SQRT(X**2 + Y•*2) - X)

and iterating it. He got the message that he was trying to take the

square root of a negative number.

It turned at that on his machine, SQRT(.499 ... 9) was slightly

greater than SQRT(.500 ... 0). The discrepancy was only 1 in the last

place. Should the machine mimic the monotonicity of the square root

function? What properties of elementary functions should be preserved

by the machine? Should f(f- 1(x}) = x always hold? How can you

insure that elementary function subroutines will do reasonJble things?

8) Perhaps you have a system of linear equations that have no solution:

X + y = 1

X + y = 2

Then consider the system:

X + y =
10

(1 + 10-10)x + y = 2

This second one is not singular~ but is it reasonable to expect an

answer? Should the computer distinguish the two systems? Usually it

isn't practical to do so.

Outline of Topics To Be Covered

Topics are not necessarily to be covered in the order to be discussed

below~ because they interlock to a substantial extent.

1) Can we axiomatize the design of computer floating point hardware?

There.are two ways of looking at this question.

i) Set up the axioms in advance and design the hardware to fit. Most

0-3

of the sets of axioms proposed are too expensive to implement. One of the

causes of the expensiveness is called (by Kahan) the table-maker's dilerrma:

How do we construct a table (or subroutine) which contains entries correct

to half a unit in the last place? For instance if we compute a value

3728.49

and we wish to carry only four digits, can we safely call it 3728? We all

know that binary machines often yield SQRT(4) = l.999999999 to the

limit of their accuracy. Perhaps the answer to the cited problem is

3728.499999 ... , that is, 3728.50, so we should write 3729 in the table.

Now, by increasing precision, the table maker can ge.t more digits .

Suppose they continue to be nines. The table-maker's dilemma is when to

stop computing and start trying to prove a theorem that the answer is

precisely 3728.5. And the table-maker's dilemma inexorably causes the

cost of floating point hardware to go up, if it is to yield correctly

chopped or rounded results on all computations.

ii) Another approach to axiomatization is to find a set of axioms

that describes the hardware on the better existing computers. But the

axioms would not be categorical because computers differ so much. You

could not prove programs correct with such axioms.

Examples are the 11multi-precision swindles." A program will be

displayed which appears to be machine-independent, and, by practically

every test, should work on every computer with every input. But there are

rare examples for which the program will not work, which of course prevent

us from proving that the program will work.

Another problem with non-categorical axiom systems is that they may

lead to proofs that certain calculations can't be done. The proofs are

0-4

correct deductions from the axioms, but on many computers the calculations

can still be carried out with good results!

An excellent discussion of axiom systems may be found in Knuth's

volume 2. Unfortunately his axioms are too expensive to implement. But

we can describe a set that are similar to his but reasonable in cost.

2) For concreteness we shall attempt to solve the quadratic equation. Can

we get the roots accurate to a few units in the last place? If we think

we have done so, can we prove it? We shall discover that, as in all of

numerical error analysis, we need to learn more about the problem than we

had thought we needed. We shall see that error analysis is so unpleasant

that it should be facilitated by the hardware design to the greatest

possible extent.

3) Next we will see what has been done in the area of automatic error

analysis. The inadequacy of the conventional wisdom with regard to signi

ficant figures will be demonstrated with an example: the QR algorithm

applied to find the eigenvalues of a tridiagonal syrrrnetric matrix. (See

Wilkinson's book on the algebraic eigenvalue problem.) This algorithm

uses similarity transformations which preserve eigenvalues. However, it

is perfectly possible that the elements of the matrix produced by the QR

algorithm by exact computation differ in every significant figure from

those computed in finite precision. Yet the end result eigenvalues may

still be correct to within a few units in the last place! Clearly the

traditional ideas about significant figures are unreliable. Yet were we

to alter any element in its last place, we would perturb the final eigen

values far more than any rounding error! Though no figure of the elements

of the intermediate matrix is correct, they are all "significant."

0-5

Interval arithmetic is a refinement of the significant figure idea

which can be very helpful when not abused. Yet it is not difficult to use

correctly, as we shall see. R. E. Moore has written a book, Interval

0-6

Analysis, and an article, in English, in the Czech journal Aplikace Matematiky

in 1968.

4) We shall decide what to do about overflow and underflow. Most people

think of over/underflow as a blunder. Yet we shall see that the wider the

exponent range on a machine, the more likely people are to be troubled by

over/underflow, even though each calculation is less likely to over/underflow.

The reason is that they attempt larger problems over a greater range of

data, so that their intuition will be more likely to fail -- causing

unexpected overflow or underflow. Yet in many cases the job should not be

aborted but merely computed in a different manner.

5) This leads to the question of execution-time diagnostics. Can we

design a system that will tell the user what went wrong, and where, without

drowning him in an octal dump? Several good systems have been designed,

and an excellent project would be to study these systems. How are they

related to interactive computing? Does the environment make any difference

in how we treat errors? What will the user do with a diagnostic? Does

the error have any significance to the user? Perhaps we need to send the

diagnostic infonnation to the calling subroutine rather than perplexing

the ultimate user unnecessarily. Can we design a system that will never

bother the user unless it is really necessary?

6) How do we prove that our programs are correct? Proofs are as suscep

tible to error as programs; Kahan's Theorem asserts that any proof longer

than four pages is likely to be wrong. We shall prove a square root

subroutine in a few pages.

Most or the standard proven programs are combinatorial in nature and

suggest their proofs by induction. In numerical analysis the proof usually

is not so directly suggested by the problem. Algorithms in, for instance,

differential equations, tend to bear little resemblance to the problems

they attempt to solve. An appea 1 to comp 1 ex variables wi 11 be required in

the proof of our quadratic solver. In general we try to show that our

incorrect calculation yielded the slightly modified result of a correct

calculation on a slightly modified input. This is not always possible!

0-7

-

-

-

1. SIGNIFICANT DIGITS, CANCELLATION, AND ILL-CONDITION

How Many Digits Should We Carry?

We shall consider a specific, simple calculation to demonstrate how

our usual rules for carrying digits are misleading. Then we will be better

able to decide on a reasonable set of axioms for floating point arithmetic.

When we write A = B + C in a Fortran program we are really thinking

of three variables a, b, c which reside in memory cells labeled A, B, C.

Our hope is that when this statement is performed the sum b + c wi 11 be

placed in cell A. In general, however, the sum is rounded:

a = (b+c){l+a)

To be specific, let b = 1.732 and c = .004290, on a 4-digit machine.

Now b + c = 1. 736290. But by chopping or rounding the machine wi 11 actua 1 ly

set

.000290 a= 1.736 = 1.736290{1 - 1_736290)

-.000290 In general we don't try to keep track of a= 1_736290 because that would

be equivalent to carrying all figures. We only retain the infonnation

that lal 2-E, for some specified E. What is the worst value that a

could take? This is attained in the case

Note also the case

b + c = 1.0005

a = 1.001

Ct '¼ 5 X 10-4

b + c = .9995

a= 1.000

Ct ~ 5 X 10-S

1-1

One might suppose that carrying four digits would limit the size of a to
1 -4 (
2 * 10 , but the first example is disparate by a factor of ten. On a

binary machine this factor is two, from which we shall deduce later that

binary is a better way of packing precision into storage.)

If arithmetic is always done by eerfonning an exact calculation and

then rounding, we can treat addition, subtraction, multiplication, and

division in a convenient and unifonn way. This assumption is almost but

not quite true on most machines, but we will assume it for the present

analysis.

When you introduce all the Greek letters into a program that deserve

to be there, it can become quite complicated:

D = SQRT(B**2 - A*C)

d = (l +0) /42 (l +B) - a c (l +y)) (l +cr)

We assume that the square root subroutine gives an error of a few units in

the last place so that e is nearly as small as the other errors.

Let us consider a quadratic x2 - 2bx + c so that a = l • b .& 1
-. '2"·

C i l. Then b2 .& 1
~ 1, and 2 3 But the error will be -. 4, ac b - ac ~ - 4 .

restricted to a few units in the last place. The error will increase

somewhat after the square root is taken, but will still be quite small, so

that we can write

-
And we can see that the ultimate solution will be correct with real part

b/a and imaginary part d/a both quite close to the true value.

1-2

-

Cancellation

When can we lose accuracy? On.a true subtraction we would have

or

If x is near

a= 10-S, b = 1010,

x(l+~) - y(l+n} = (x-y)(l+i;;)

Xs - Yn = i;;
X - y

y, i;; will be large.

c = 10-5. Then

We examine a different quadratic:

d=IJ02o_ 10-10

Unless we carry thirty digits, the 10- 10 is negligible. If we only

want a few digits in the answer, surely we need not carry thirty digits.

So d = 1010. If we use the quadratic formula, we get roots of 2xlo
15

and 0. But zero is clearly not a root, and is accurate to no figures.

Clearly, "cancellation is to blame." But, the subtraction was done with

no error. The error was made when we did not carry thirty figures earlier.

Cancellation does not cause error, but reveals earlier errors.

How can we change our algorithm to avoid carrying thirty digits and

still get the correct answer? We rewrite the problem in the suggestive

form:

or in general

Divided Differences

We could compute the product f'(x)h accurately; unfortunately, it is

1-3

a mathematical approximation true only in the limit. But we can circumvent

the latter difficulty by introducing the divided difference, which is a

function of two points x1 and x2:

f{x1) - f (x 2)
Af(xl ,x2) = X - X

1 2
: f I (X)

Suppose, for example, f(x) = xn. Then

In this case we can do the division symbolically, and find an expression

for t::.f that can be computed accurately when x1 is near x2•

Divided differences behave much like derivatives. For instance,

6 (f + g) = 6 f + t::.g ;

A(fg) = (wf)Ag + (wg)t::.f

where wf(x1 ,x2)

t::.(!.) = (ug~Af - (uf)Ag
g g xl)g(x2)

= t::.f - u(fr)t::.g
ug

•

1-4

Note that in these cases, the troublesome x1-x2 terms have disappeared.

We can also deduce formulas for algebraic functions, which are those that

can be obtained as solutions of polynomial equations

Each pj is a polynomial in x.

-

For instance if f(x) = /x, then

l•f 2 + O•f - x•l = 0

✓x, -/xi 1
l:,.f = ----

x1 - x2 ✓- + r.-x 1 vx2

For our quadratic problem

When we recompute our quadratic problem we find the small root quite

easily to be ½ x 10-15 The 1 arger root cannot be computed with this

fonnula, for the same reason that the smaller root could not be computed

with the first fonnula. Our final algorithm yields

With this scheme, cancellation is never a problem. And the moral of

the story is that we lose accuracy by rounding. Cancellation is merely the

messenger which reports the bad news.

Ill-Condition

Perhaps, after the previous discussion, we thought we could solve a

quadratic equation accurately every time. We shall, however, see that even

though we can get as good an answer as we could hope for with moderate

precision, it still may not be as good as we want. This problem is

different from the previous because no tinkering with the algorithm will

1-5

help. The general name for this problem is ill-condition.

Consider the quadratic

ax2 - 2bx + c = 0

b+/2~ The formula x = x {a b c) = ·- ac indicates clearly enough that the ± ± , , a

roots are continuous with respect to the coefficients. A small change in

the latter, however, may yield an unpleasantly large variation in the roots.

Consider, for instance,

with roots l + e:, 1 - e:. A change in c of order e:2 causes a change in

the roots of order e:. A change of one unit in the eighth place in c

changes the fourth place of the roots. This is bad because rounding errors

can be thought of as being equivalent to a small perturbation of the coeffi

cients. If we carry single precision throughout, we can expect sometimes

to get only half precision in the roots. Recall that we define~ good

algorithm as one that delivers the slightly altered result of a correct

calculation on a slightly altered input. By this standard our quadratic

algorithm is a good one. Unfortunately many people do not distinguish

between wrong results due to poor algorithms and those due to ill-condition.

1-6

2. RULES FOR FLOATING POINT ARITHMETIC

We now turn to the general problem of floating point design. Knuth

(Vol. II) starts simply by specifying the format of floating point numbers

as, say,

(sign bit) (base) (exponent) {integer)

+ I , M <I< 2M

The inequalities are added to insure a unique representation. Note that

the twos could just as well be 8, 10, or 16, among others. Our rules

will not be based upon this format specifically. It illustrates two facts:

(l) the exponents are bounded -- which, however, we shall ignore

for a time;

(2) the set of numbers is a discrete finite set.

We formulate rules for desirable sets of numbers.

Rule #1: The set of representable numbers should include 0, 1, and if

x then -x. (There are a host of other possibilities such as, if x (t 0)

then 1/x, but these are problematical. Also note that the possibility

of two representations for the same number, e.g. +O and -0, is not

excluded if they really have identical arithmetic properties.)

The next rule will have to be changed later.

Rule #2: If we perfonn an elementary operation f(x 1,x2, ...) on represen

table numbers, and the result is not representable, then it should be appro

ximated by the nearest representable nl.lllber. Examples of elementary opera

tions might be +, -, /, *, and base conversion. Note that there is an

ambiguity here, when the result is precisely half-way between two represen

table n1.1nbers. This defect will be dealt with momentarily.

2-1

More troublesome is the question, can we actually afford to implement

these rules? The answer will be discussed in the next lecture. •

Returning to the amiguity in rule two, we offer another rule.

2-2

Rule #3: Resolve the amiguous case in a way that preserves as many relations

as possible. A relation is a statement like (x+y) = -:((-x) + (-y)). The

widely used rule 11add one-half in the last place cited and truncate" does

not preserve this relation.

Relations that could be preserved could be characterized in the

fo 11 owing way:

Consider three functions: f{x), g(x), h(x), which map representable

numbers onto representable numbers.

Example: f(x) = -x or f(x) = constant

or g(x) = 2Kx (binary machine, K an integer)

These map representables onto representables except for over/underflow.

To resolve ambiguities in a systematic way, we would want to preserve

the following property: if h(x 8 y) = f(x) 8 g(y) we want the machine

to preserve that relation too. If we round h(x 8 y) and round

f(x) e g(y), we want the relation to still be true.

Example: f(x) = -x, g{x) = -x, h(x) = x, 8 = *

This example is preservation of sign symmetry. If we reverse the sign

of x and y, the sign of the product shouldn't change.

On one machine, this didn't happen. It used a subroutine for multi

plication. If you reversed the sign of one operand (2's complement machine},

it would not reverse the sign of the product. If you reversed the signs

of both operands, you would get something really funny.

On another machine, people used its divide subroutine for three years

without knowing that you get the wrong result if you divide by a negative

number:

X -X +x y; -y +- y+T• x, y integers

If we could follow these three rules they would be categorical. All

elementary operations would have a result uniquely determined by the rule

for the ambiguous case. An example of a good rounding rule is to round to

the nearest "even" representable number. This rule preserves the sign

syfTmetry. (We must, however, define the two numbers nearest zero on either

side to have the same parity.)

Consider now the consequence of some other rounding rules, in this

Fortran program:

l X = Y+Z

y = x-z
GO TO 1

2-3

Suppose we have four digits and we chop. Let the starting value of Y = 1.000

and Z = 10-5. As we go around the loop we get X = 1.000, Y = .9999,

X = .9999, Y = .9998··· . Obviously Y will have many values in this

loop. Is there an arithmetic system which will recover the value of Y

every time? None is known. But if you satisfy rule 2 and rule 3 you will

get a short finite sequence of values for Y.

Now we shall see that the question is not to round or chop, but how

you resolve the ant>iguity. This time we add one half in the last place and

then chop. Start with Y = .1000, Z = 5 x 10-5 and find X = .1001,

Y = .1001, X = .1002, Y = .1002,

If, on the other hand, we round to the nearest even representable

number, we find, for the sane computation, X = .1000, Y = .09995,

X = .1000, Y = .09995, •·· . Y has changed, but only once.

These considerations are not trivial. When updating a decimal tape

on a binary computer by copying, with some computation, the binary to decimal

and decimal to binary routines should be approximately inverses. Yet on

some machines that chop, they are not. Another example is certain eigen

value algorithms which perform a "shift of origin" on the diagonal elements

of a matrix, massage all of the matrix, and then undo the original origin

shift.

For this general problem, see Dave Matula in CACM.

Exercise. Suppose we represent numbers as a sign bit followed by log lxl

in fixed point XXXX.XX . What are the interpretations of our rules?

Discussion of Exercise

We would represent numbers by a sign bit and the log lxl in fixed

point. This has been discussed by D. Matula, D. Muller, and Gauss. Clearly

2-4

we can do multiplication and division completely accurately, except for

overflow, because these operations involve fixed point addition or subtraction.

An add or subtract is more expensive in this system! The technique is

called addition logarithms. See Fletcher, Miller, and Rosenhead, An Index

of Mathematical Tables. What properties would such arithmetic have?

The distributive law is satisfied precisely. But only one of the

integers 2 and 3 is representable in this system! [Is this worse than

2 and /2 not both representable?] This system has never been fully

explored, so that we can't say that it's better or worse than the usual.

Certain little tricks don't work that we depend on occasionally to give

exact results, e.g. the difference of two nearly equal numbers would not

be precise in the log system.

3. COST OF THE RULES

Our purpose is to demonstrate why our rules are too expensive to imple

ment. Some of these costs are begrudged unjustifiably, though for others

there are fairly good reasons.

Addition and Subtraction

Consider first addition and subtraction. We right shift and then add.

How many extra digits should we carry for the result?

±

□ --=========== t
overflow

We know that no more digits need be carried than the range of our

exponent, which, however, is much too many. It suffices to carry a guard

digit, a round bit, and a sticky bit:

___ c_=====.::==----
_____ J ~ ffi ~

0 = overflow
G = guard
R = round
S = sticky

You could even timti-share the overflow and sticky bits, though it hardly

seems worth it. The st~cky bit tells you if a~y non-zero digits have dropped

off the right in the ri~/ht shift. Now the sim!)lest case is when overflow

occurs. Then we can round by adding five (for decimal) or l (for binary)

in the last place. We will then shift right. In the ambiguous case, we

instead round to even.

3-1

The next possibility is that no overflow has occurred but that the number

is already nonnalized. We add } in the last place, i.e., 510 or 12

in the guard digit, unless round to even is indicated by G = 510 or 12

and R = 0 and S = 0.

If the result is unnormalized with one zero on the left, we round in

the round digit, after checking the sticky bit. If S = 0 and R = 510

or 1
2

a round to even is required. If there are two or more zeros on the

left, the right shift of the smaller operand was not past the guard digit.

No rounding is required.

Many people think they can get along with just a guard digit. But they

can•t give you correctly either rounded, or chopped arithmetic with such a

scheme! Correct chopping is defined, by the way, as replacing the result

by the nearest representable number no larger in magnitude. Suppose you

have one guard digit and you subtract a much smaller number from a larger.

The much smaller number is shifted far off to the right and off the end and

there is nothing to show for it (without a sticky bit). The result is

certainly correct to one in the last place. This result will be a little

bit too big, however -- and therefore not correctly chopped. Why is this

bad? The answer appears to be more accurate. On a four digit machine

surely the better answer to 1.001 - 1.000 x 10-lO is 1.001 rather than

1.000, the correct chopped answer. It is surely more accurate. But what

do we know about the end result? With correct chop we know that the true

answer is in the interval (1.000,1.001). But with the "better 11 scheme,

3-2

the true answer could lie in {l.0009,1.002) which is a 10% larger interval.

That is, though the accuracy is better, the uncertainty is slightly greater!

And at the end of a calculation we want as small an uncertainty as possible.

If we know that, mathematically, the values in storage satisfy

a+b = x+y

-

should it be possible for A+B .EQ. X+Y to be false?

Exercise: Discover the circumstance in which this can happen.

Question: Do you round a negative number as the absolute value of

the number or round it towards zero?

Answer: You round a negative number to its nearest neighbor unless

it is half way between. That has nothing to do with where zero is.

3-3

0

j yol I 1 representable numbers are lines --,t-"--j----------t-'t-,-----1--+ circles are evens

7 actual result rounds to nearest neighbor

half way between rounds to nearest even

You don't care where zero is •in rounding.

Question: For normal machines that round, they usually just add l

in the last place.

Answer: Sign-magnitude machines do just add 1 in the first bit to

be discarded.

0 < > 0

sign magnitude rounding

direction of rounding by adding in last place

In a 2 1 s complement machine like G.E. 635, when you add that 1 bit in, it

moves everything to the right; it doesn't necessarily move the number

closer to zero.

In a 1 's complement machine like 6400 the same thing happens as in a sign

magnitude machine.

If you truncate (throwing digits away), you are always moving to the

left.

I don't want that to happen in my scheme.

Question: How does 21s complement work?

Answer: Example of 2's complement rounding.

T.oo 1 -7/8 in two's complement

1.00 truncated in two's

\representation for -1,
for a negative number

complement

so magnitude has been increased

You need 1 or 2 round bits. But could you get along without the

'sticky' bit? Students should verify for themselves that you cannot round

to the nearest neighbor without a 'sticky bit.'

Students should also verify that if you have to left shift the answer

by more than l bit, the answer is exact. Only when a single left shift is

required is there any problem.

How About Bias?

Has "bias" or "drift" been eliminated by this construct?

Will the following sequence be prevented from "drifting"? Take x, y

3-4

arbitrary and x
0

= x. Let x,.+l := (x
1
.+y) -y. Is x - x - x - - x ? ,- 2- 3-•··- ;+1·

Notice that x
0

does not appear in the sequence.

-

Test on arithmetic already known

truncated arithmetic x, y > 0.

+

X

1x+y1 is too small

•x+y']

I Y f1//41
"'x+y'-y"~

thrown away
also too small

x 1 < x by at least 1 unit in the last place, maybe 2, n+ n
if y has some l's that got thrown away.

You could push x down until it is comparable to y; then the process

would settle down.

A similar thing can happen if you round up in the conventional way

that is, add 1/2 in the last place and throw away the fraction. But

then you drift up instead of down.

Example. xn = 1.00001101 9 significant bits

y = . 100000001
1
Xn +y I : 1. 10001101r ==;> 1.10001110

-y: . 10000001
stored 'x+y'

1.00001110 ~ l.000011001
when stored

stored(stored(x+y)-y);. x that you began with

The final value has increased by 1 in the last place. This will happen

every time unti 1 the initial 1. in x has become 10. Then the extra

digit in y gets right shifted off and the sequence settles down. But

·you can as much as double x by repeating the process long enough.

3-5

Same example by rounding to nearest even.

The first time through you get the same result:

(l) stored(x+y) = 1.10001110

(2) stored(stored(x+y) -y) = l.00001110

Now go through the cycle again:

l .00001110
+ . 100000001

1. 100011101: rounding =;, l. 10001110

1.10001110
- . 100000001

1. 000011011: rounding =;, 1. 00001110

There is a change in the first step if x is odd. Then the sequence

doesn1 t 11drift".

You prove this in general by examining all the different cases.*

Question: How about other possible sequences and drift?

Answer: If multiply/divide are in your sequence, it will also settle

down. Arguments are similar to those used by Dave Matula in papers on base

conversion. (See his papers -- usually have 'base conversion' in title,

look in ACM.)

In the multiply/divide case, you can verify the result by observing

that the error can't exceed half a unit in the last place, in either

multiply or divide. So in one step, the error can't exceed 1 in the last

*

3-6

For y .s._ x, you don't have to shift y. Then nothing interesting happens.
If you have to shift y, some digits will fall to the right of x. Does
addition cause x to overflow? Follow one branch. If you don't have to
right shift, look at the digits to the right. Say y > x: right hand digits
of x

0
get stripped off, then no rounding errors.

place. You need to show that if the error was 1/2 in both cases, some

thing peculiar happens and show that that just doesn't happen.

Question: Why isn't it economical to build a machine that rounds

your way?

Answer: I said it has not been thought worthwhile to do it this way.

People who build machines don't see that there is much value in building

machines that eliminate the bias. (Neither does Knuth as he doesn't

discuss it at all.} I'm not sure people appreciate what would happen if

you eliminated the bias. Certain iterations would work better, on the

average. Certain identities would be preserved. It would make it easier·

to prove certain relations about iterations, such as ultimate

convergence.

Example. rz, z > o

y = (1. + z)/2. e
l yN = (y

8
+ z/y

8
)/2.

if (yN .EQ. y
0

) go out

else y
0

= YN
go to 1

On a truncating machine, one thing can happen and on a rounding

machine, another.

3-7

You try to prove that this algorithm will tenninate (on some reasonable

machine) with two successive equal values for y.

In principle: y1 > Y2 > y3 > ••• > Yn > ✓z

In reality: one > sign becomes an = sign and you stop. You've

come as close as you want to ✓z.

If drift does not exist, it is easy to prove that this tenninates. You

can also prove that it will tenninate for rounding machines. But it might

not tenninate for machines which truncate.

Question: Then the purpose of sticky bit is to prevent drift and

that's all?

Answer: Yes, it prevents drift and it makes things correctly rounded.

If you want the machine to truncate correctly, you would still need a

sticky bit. It is not possible to achieve the type of rounding desired

with only a guard digit. You can add 1/2 or chop with only a guard digit.

You cannot get correctly truncated arithmetic with only a guard digit.

Multiply and Divide

Now let us consider multiply and divide. Can we satisfy our axioms at

a reasonable cost? Here is the picture:

* I.__ __ ___,

+ ... I ____
first bit may be O ~ I ._I __ ___.__l _.j _ ___.

When we multiply two single precision nonnalized numbers we may get

at most one leading zero in the double precision result. Clearly we need

at most only the leftmost word plus one digit ... except when we might be

3-8

near the ambiguous case. If we don't care about that rule, we can eliminate

about half the work. To follow our rules we must develop the entire double

precision product precisely, even though, as on the IBM 360, only one guard

digit need be maintained and un-needed digits of the product may be continually

dropped off at the right. On the 360/91 many tricks are made to speed up

the multiply and divide. See Kuki and Ascoly, 11Fortran Extended-Precision

Library, 11 IBM Systems Journal, 10, p. 39, 1971, and Anderson et.al.,

--

-

"Floating-Point Execution Unit, 11 IBM Journal of Research and Development,

11, p. 34, 1967.

Whatever is done about multiplication, adhering to our rules for

division will cost us a factor of two in execution time. Perhaps we've

been thinking of the usual division algorithm which gives a precise integer

style quotient and remainder, from which it is easy to implement our rules.

The trouble is that our usual division algorithm is too slow. In the

search for faster methods, our rules will go out of the window.

The fast division algorithms depend on fast multiplication techniques.

We can divide this way almost as fast as we can multiply. We convert ¼
to 1 ~ £ by a number of multiplications on the numerator and denominator,

on the general principle that {l+o){l-o) = 1-o2, to get the denominator

to 1. But at the end we don't know whether to round up or down.

We can do one more multiplication to get a double precision quotient.

For instance, a very troublesome division for getting a correctly chopped

quotient is

.999···98
_999 ... 99

+
= .999···98999···989···

Clearly we must compute to full double precision plus one bit to get to the

eight which tells us how to chop. But the extra hardware for a double

precision divide might well un-justify the fast division algorithm!

It is hardly surprising that most machines don't follow our rules.

The B5500 does correctly in all but one instance. So there is hope! The

next lecture will discuss the CDC 6400. For preparation read J.E. Thornton,

Design of a Computer: The Control Data 6600, 1970.

3-9

4. ARITHMETIC ON THE CDC 6400

Number Representation

We now turn our attention to the capabilities of the local hardware

unit, the Control Data 6400. First we need to consider the way the numbers

are represented. The 6000 series uses ones-complement floating point repre

sentation, so that negatives may be obtained by complementation. For our

convenience we will use signed-magnitude representation which is equivalent.

That is, we could not tell if the results given by the 6400 were secretly

computed in signed-magnitude and then converted to ones-complement for

output.

If the number is negative, it is represented as the complement of the

representation of its magnitude. Bit zero is the sign bit. Then a positive

number is represented as

Is I C I
S = sign bit
C = characteristic (11 bits)
I= integer (48 bits)

C is interpreted by complementing the leading bit and regarding the

result as an eleven-bit ones-complement binary integer, which is the

exponent e. The reason for this complicated scheme is so that we can

compare two floating point numbers by subtracting their entire 60-bit

representations as integers. Then the sign of the result would indicate

the proper relationship between the original operands. Unfortunately there

are so many exceptions that this idea is unusable.

I is interpreted as a 48-bit integer with binary point at the right.

Then the number represented is

4-1

To make the representation unique we normally consider only normalized

numbers.

A number is normalized if e = -1023 and I= O, in which case it

is a normalized zero, or if -1023 < e < 1022 and 247 <I< 248- 1. In

bi nary, write

100···00 < e < 011···10 - -
100··•00 < I < lll•••ll

With this restraint every number has a unique representation. We shall see

that this is important in floating point units of the CDC v·ariety. On, for

instance, the 360, addition but not multiplication is affected by normaliza

tion. On the 85500 normalization makes no difference.

There are a few exceptions. If e = 1023, then the number is infinite

and lies outside the magnitude range 2-976 to 21070. If a number is

generated greater than 21070 it is replaced by a characteristic of

infinity. If the number you would have liked to generate had an exponent

of precisely 1023, then the I part is correct. In general the I part

is not related to the true result.

If the true result would have been less than 2-976 then it is

replaced by zero with no indication to the user, except that he may notice

4-2

that the product of non-zero numbers is zero. When an infinity is generated

there is no indication except the infinity characteristic which may be tested.

The machine may be operated in two modes. In the most corrmon, the

subsequent use of an infinite operand aborts the job. The user is given

the address of the word in which the instruction was located which tried to

use the infinity. He may be able to determine which instruction in the word

caused the interrupt.

In the alternative mode no interrupt occurs and there may be generated

a new kind of object called an indefinite ~, with e = -0, in accordance

with certain rules, such as:

co/co=-&

O*co=-&

number /co= 0

Note that an indefinite will never go away, but an infinity may disappear!

These rules may seem safe but in fact they are not, as we shall see.

There is a question yet of what constitutes a zero. The multiply and

divide units treat any quantity with e = -1023 as a zero. This was done

to speed processing of sparse matrices by checking for zero factors in

advance of multiplication. But the add-subtract logic checks all sixty

bits and calls the number O only if it is precisely +O or -0. So it

is possible to use a branch on zero instruction to test an operand, which

4-3

uses add-subtract logic, get a result of non-zero, divide, and get an. infinity.

This is a mistake in the design caused by the fact that the multiply-divide

units test only the first twelve bits of the word. By adding one more logic

element to test the thirteenth bit, the problem could be solved. Instead,

the problem was given a name (partial underflow) and announced as a feature

in the 7600.

Floating Point Instructions

Now we are ready to discuss the floating point operations. There are

nonnal (chop) instructions such as FX, rounding operations called RX,

and operations to get the second half of a double precision product, DX.

On an FX multiply you get the 48 most significant bits of the product.

A DX multiply on the same operands yields the 48 least significant bits,

with an exponent 48 less than the FX results. Note that underflow could

happen in the DX result and not in the FX. Except in that case, the

double precision product is the sum of the two numbers.

For addition things are not so handy. There is in effect a 96 bit

register in which the smaller operand is placed, and then right-shifted,

with digits off the end if necessary:

48 bits I
± ._I __ ___._~=-........,.......,._._.__9_6_b_i_ts~I

IQJ ._I __ F_X __ ~ __ D_X __ _

If an overflow occurs on a true add both registers are shifted right one and

both exponents adjusted. On a true subtract, however, FX will give you

an unnonnalized result. Therefore we usually follow with an NX nonnalize

instruction, which, unfortunately, only normalizes the left part. To see

the problem here, consider this four-bit example, 1.000 - .1111:

1 . 0 0 0

1 1 1

0 . 0 0 0

FX

0 0 0 0

l O O 0

1 0 0 0

DX

When the result of FX is normalized the answer is zero, yet clearly the

operands are unequal. If we write A = B- C we can•t have a = (b-c)(l+a)

with a small. In this case, in fact, a= -1. The best we can say is

that a = b(l+S) - c(l+y) with small f3 and y, which is substantially

less convenient for error analysis. Here B = .001 and y = O.

4-4

-

We would hope that, if a result could be represented precisely, then

it would be. Fortunately in this case we could get around this by extra

coding. For the sequence

insert instead

FX2 Xl-XO
NX2

FX2 Xl-XO
NX2
DX3 Xl-XO
NX3
FX2 X2+X3

4-5

This gives very nearly the correctly chopped result. We need five instructions!

It is hard to persuade compiler writers to generate this much code for

such a simple operation.

Rounded Addition and Subtraction

We turn our attention now to the rounded arithmetic instructions which

are in a unique form in these CDC machines. Rounding is nonnally thought

of as adding one half in the last place after the operation has been com

pleted. This may generate a carry chain which will slow things down. On

addition the CDC units add one half in the last place to both operands before

the operation. When the characteristics of the operands are equal the

correct result is obtained. When the characteristics differ by 6, then,

in effect, the quantity ½+2-(t.+l) is added to the result, if no overflow

occurs. [If overflow occurs, then the quantity is ½<}+2-(.Ml}).] This

quantity might be as large as ¾- The results are what we would expect

when 6 = 0 or 6 is large. But the overall arithmetic is very hard to

predict, and situations which may be bad in FX are worse in RX.

In particular, whenever we know that x+y = a+b, we want X+Y .EQ. A+B.

Yet this is sometimes not the case on the 6400 if x and y are opposite

in sign and large, but a and b are small. This can occur using either

FX or RX arithmetic.

What Relations Does the 6000 Satisfy?

4-6

We have mentioned that we would like our hardware, which of necessity

must approximate results, to preserve as many desirable relations as possible.

For instance, if we know that the numbers represented in the cells A, B, X,

and Y, satisfy the relation

a * b = x * y

then we would want this relation preserved by the machine operation *·

The value stored for A* B should depend only on the value a* b, and

not on *, a, or b. The purest kind of rule, such as Knuth proposes,

whereby we perform the operation correctly and then round, is ideal. On

the 6400 we can nearly achieve this goal on FX*, FX/, and FX± using the

five-instruction sequence given in the previous lecture.

Exercise: Verify that the results of the operations indicated are very

nearly independent of the operands.

There are, unfortunately, plenty of discrepant cases on the CDC machine.

The ordinary FX+ and NX sequence provides several. Consider the

foll<Ming program:

-

X = 0.5
F = {X-0.5••48}+X
DO 2 I=l,100

X=X•2.0
Y=X•F
IF(X.EQ.Y.AND.(X-1.).NE.(Y-l.}) WRITE(!= ...

2 CONTINUE

If this program is compiled on the standard RUN compiler and then executed,

the message is printed for I= 2,3,4, ... ,48 and for I= 97. Note that

the value of X in the loop is 21- 1 and the value of Y is 21-1(1-2-48),

both co~uted precisely. The problem here is the compiler's test for

equality:

FX3 Xl-X2
NX3 X3
ZR X3, ...

The problem is that the difference between X and Y is developed in the

DX part of the sum. The FX part is zero, so X appears to be equal to

Y. For any machine in which the result depends too strongly on the operands,

such an example can be constructed.

One easy fix that suggests itself is to compile

IX3 X1-X2
ZR X3, ...

But now another type of program can get into trouble, namely one that

includes a statement of the form

IF(X.NE.Y) A/(X-Y)

That is, we have trouble with the uncertain definition of zero, since the

4-7

X.NE.Y will be done by an integer subtraction while the divide unit will

receive the result of a floating point subtraction which may well be zero.

To get by on a CDC machine we could write

IF(X-Y.NE.0.0) ... A/(X-Y)

but we have lost a degree of machine independence. The RUNW compiler has

been modified by D. Lindsay to perform these tests in a reasonable way (see

Appendix II).

We have an example of the CDC RX± instructions provided by Wirth

in five bit arithmetic. In five bit arithmetic the number 33 is not

representable so it should be represented by either 32 or 34. In an RX

instruction to add 16 to 17 we get

Round bit

1 0 0 0 0 1

+10001 1

1 0 0 0 1 ~a--++O = 34

Now if we add 31 and 2:

1 1 1 l l l

+ 1 0 0 0 0 1

100001 1001 = 32

So the CDC RX instructions have the same problems as the FX.

Rounded Multiplication

We now consider RX*. Recall that in FX* the result is independent

of the operands. In RX, if both operands are normalized, then the round

4-8

--

is accomplished by adding a one to the result prior to final nonnalization:

*-'----

[

+._I ___ _,

I 1 ____ 111_ 1 __

+ 01

(Nonn) ._11 ____ __,! ,._! ---

(The 01 is present at the start of the multiplication in order to avoid

a long carry at the end.) This scheme is reasonable if post-normalization

occurs; we have added one half in the last place. But if no nonnalization

occurs, we have only added a quarter. So the error in an RX* may be

almost as large as ¾ in the last place, compared to 1 for FX*. But

now the end result depends on the operands. Consider

A= 22•(246-1)

B = 5•245

X = /4(223+1)

y = 5•223(223 _ l)

Then, although ab= xy, RX(A•B) < RX(X•Y)! Still, the difference is only

one unit in the last place ... which is not serious, unless the difference

is between zero and not zero.

4-9

An Example

Here's an example, in 2 decimal arithmetic, utilizing CDC's method of

prerounding, in which

even though, in truncated arithmetic, the products are equal.

A= 45 45

B = 19 x 19

as the answer

C = 95 95

D = 9.0 9.0

-l+ 850 as the answer

Question: Is there a large range of numbers that will do this?

Answer: I used a table of factors, taking a number that had lots of

factors and which had a leading digit that was large. I wanted it to be

an eight, or the example doesn't work out so nicely.

The significance of this example is not that something is going to

happen to you if you use rounded arithmetic but merely that rounded arith

metic on a CDC cannot be characterized by Knuth's rule that the result

should be obtained from the true value by following a rounding prescription.

This is true because the rounded result depends not only on the end value

but also on intennediate values.

To get a correctly rounded product, we can do

FX0 Xl*X2
DX3 Xl*X2

RX0 X0+X3

4-10

--

-

-
For division, CDC adds t in the last place to the dividend -- that

is, the binary string 0101

L----~lj.__ __ ~1010101

· On the average, one can expect the quotient obtained here to differ

from the true quotient by zero. Curiously, on the 7600 the quantity !
is used instead of j· This could cause endless agonizing if we try to

transfer a program.

Unsolved Problem: Is there an example of an RX division in which

x ❖ y =a+ b but X/Y.NE.A/8?

Unfortunately, there is no easy way of getting a quotient correctly

rounded on the CDC 6400. The best that can be done is to take the given

FX_ results, multiply it times the divisor to get a double precision product

which is then subtracted from the dividend in double precision to get the

remainder. Dividing the remainder by the divisor yields the correction

which must be added to the first quotient.

Peculiarities of CDC Roundoff Errort (by Fred W. Dorr and Cleve B. Moler)

Kahantt proposed the following Fortran program as an indicator of

computer roundoff error:

H = 1.0/2.0
X = 2.0/3.0-H
Y = 3.0/5.0-H
E = (X+X+X)-H
F = (Y+Y+Y+Y+Y)-H
Q = 2.0*F/E
PRINT, Q

f SIGNUM Newsletter, Vol. 8, No. 2, April 1973.

ttW. Kahan, "A Problem, 11 SIGNUM Newsletter, Vol. 6, No. 3, 1971, p. 6.

4-11

The problem is to find what possible values Q can assume on different

computers. Kahan intended that ABS be used in the computation of Q,

but we have found that the sign of Q is also interesting.

Thorough analysis of complicated numerical algorithms requires detailed

understanding of computer arithmetic. Study of simple algorithms such as

this helps in that understanding. We have run this program on the

CDC 6600/7600 computers at the Los Alamos Scientific Laboratory. In

describing our results we will call the above set of instructions Program I.

We also consider a modification of this program in which the first three

lines are replaced by

ONE = 1.0
TWO= 2.0

THREE= 3.0
FIVE= 5.0

H = ONE/TWO
X = TWO/THREE-H
Y = THREE/FIVE-H

and we call this version Program II. On both computers it is possible to

select either truncated or rounded arithmetic. The resulting values of Q

are sumnarized in the following table:

6600 7600

Truncated -6.0 -6.0 Arithmetic
Program I

Rounded -6.0 -6.0 Arithmetic

Truncated 3.0 3.0 Arithmetic
Program II

Rounded -6.0 4.0 Arithmetic

4-12

-

-

-

-

There are two interesting features in this table: the differences

between the two "identical" programs on a given machine, and the difference

between the two machines on Program II with rounded arithmetic. The two

programs produce different values on a given machine because the co~iler

computes values for the constants 1.0/2.0, 2.0/3.0 and 3.0/5.0. The

value for 1.0/2.0 is exact, but on both computers the value for 2.0/3.0

is rounded up while the value for 3.0/5.0 is rounded down. This occurs

because the compiler computes the constants in two separate steps. The

4-13

first is a rounded reciprocal divide (1.0/3.0) and the second is a truncated

multiply (2.0*(l.0/3.0)).

The rounded arithmetic case for the 6600 is the same for both programs

because the 6600 "rounded divide" computes exactly the same values for

these constants as the compiler computes. Since this is also the reason for

the difference between the two machines on Program II with rounded arithmetic,

let us explain this phenomenon in detail. The rounded divide instruction,

which is actually a form of "pre-rounding.'' is executed on both machines

by the following algorithm: (l) take the 48 bit mantissa of the dividend

and append a 48 bit number a after the least significant position,

{2} divide this 96 bit number by the 48 bit mantissa of the divisor, and

(3) truncate the result to 48 bits. For the 6600 a= 1 and for the 7600

a=~- This algorithm produces the following rounding characteristics

for the constants:

6600 7600

2.0/3.0 3.0/5.0 2.0/3.0 3.0/5.0

Rounded reciprocal
divide followed by up
a truncated multiply

down up down

Truncated divide down down down down
'

I Rounded di.vide I up down up up

The up-down combination leads to Q = -6, down-down leads to Q = 3, and

up-up leads to Q = 4. The true values for the constants are:

j = o. 52525252 ... 8

! = 0. 46314631 ... 8

Overflow and Underflow

We now consider what happens on the 6400 when overflow or underflow

occurs. The descriptions in the manual seem eminently reasonable, and

some experience with the consequences is necessary for a proper appreciation.

Suppose that we are operating in the mode which allows indetenninate forms

to be used. We have the following program, along with the naive expected

values and the actual computed values:

ExQect Get

X = 2.0**1069 21069 21069

Y = 4.0*X 21071 or 00 00

Z = Y-2.0*(X+X) 0 or -& -&

T = (((Y-X)-X)-X)-X 0 or -& 00

U = 1.0/T 00 or -& 0

V = X/Y 1
4 or -&- 0

We expect to get a value that is either correct or indefinite. Unless

we simulate each step performed by the 6400, however, we would be surprised

by the last three results.

There is no consistent way to compute with infinities. After all,

some infinities "really mean" infinity, as in

that is just slightly too large to represent.

l
0, but others mean a number

4-14

With underflow the situation is even worse because there is never any

indication that it has occurred. Here is an example:

z = 2.o..wr(2*•10-48)
C = 1.0/Z

A= C+C
B = A•l0.0**9
D = A+B
X = (B+D)/A
Y = ((AX+B)/(CX+D))/{(A+B/X)/(C+D/X))

(this ought to be 1)
IF (A>O and B>O and C>O and D>O and X>O and Y>2.999) WRITE Y

All of these numbers are positive and not zero. No subtraction can occur

so we don't worry about cancellation. Y might differ from 1 by a few

units in the last place.

But this program prints out Y = 2.99999999875. What has happened is

that an underflow has occurred without any warning. We find that

z = 2976

C = 2-976

A = 2-975

B = 2-975*109

D = 2-975(109+1)

X = 2 x 109 + 1

Considering the mechanisms for * and / we can actually predict the value

of Y, taking into account the threshhold for underflow, as follows:

AX+B = 2-975•(3·10 9+1) and the 6400 calculates this precisely.

When we try to compute CX, the multiply unit notices that the

4-15

exponent of C is -1023 and calls C a zero, when C. is actually not

zero but is "partially underflowed." So

For comparison, on a cleaned-up 6400 with that 13th bit wired into the

multiply zero test

Then

and

Now

AX+B _ 3 + 10-9
.a. 9 -- - --- - 3 - 2*10- on the 6400

CX+D l + 10-9 •

-9
6+2*10 ~ 3 _~,o-9 on the cleaner version.
4+3*10- 9 2 ~

1 = 2-975(109) < 2-976 and is therefore set to zero as
2• 109 + l an underflow

A+~= 2-975
X

Q.x = 2-975{ 1 + ,o-9)
2 + ,o-9

on either system

which means it is partially underflowed. The add logic is not aware of

such distinctions and adds it correctly to fonn

which is not partially underflowed. Then

4-16

Finally we compute a factor of -t:wo difference! Y ~ 3- t910-9 on the 6400

and Y ~ ~ -¼-10-9 on the cleaner version. The system for underflow and

overflow is clearly a serious problem on the 6400. We shall see that more

rational schemes can be devised.

I~teger Overflow on the CDC 6400

We study integer overflow to illustrate the principle that machines

can't be designed piecemeal. There seems to be an inevitable interaction

among various features of the machine so that poor design in one unit

inhibits efficient action elsewhere.

Our CDC machine was basically designed to facilitate parallel processing

of instructions to the greatest possible extent. At any moment it might not

be possible to tell what order of execution was intended by the progranmer

for the instructions currently in various stages of execution. The CDC

machines keep fairly well co-ordinated except in a few critical instances.

It was decided not to interrupt on overflow or underflow because it was

quite possible to get in the situation that, when overflow or underflow was

detected, a later instruction had already been started which wiped out

one of its input operands so that the program could not be restarted. Other

machines with look-ahead features such as the 7094 were prepared to discard

some decoded instructions if necessary in order to have over/underflow

interrupts. This is reasonable for machines with small sets of registers.

In contrast, when the 360/91 was designed it seemed unreasonable to do this,

so there is a problem of "imprecise" interrupts. The interrupts occur,

but the location of the error specified to the user is usually one or two

words from the instruction which caused the error. Thus it was decided

that the 6600 would not have such interrupts at all. Today we shall see

4-17

what consequences this entails in the case of integer overflow.

I= 2**40
DO 11 L=l, 18

11 I= I+I
J = I+3
K = -I
IF(J>O AND K<O AND J+K=3 AND J<K) WRITE ... !

Why did this program output an exclamation? It was surprised that

K<O<J and J<K. What has gone wrong has nothing to do with anything like

rounding. Rather, the compiler test for J<K did not take into account

the possibility of integer overflow. In this program I= 258, J = 258 +3,

K = -2 58. The J<K test is converted to J-K < 0. J-K = 259+3 which

overflows, producing a negative number, with ones in bits 59, 1, and 0.

With no overflow indication, the machine has erroneously concluded that

J < K. It would have been complicated to include overflow indications for

the eight X registers so it wasn't done.

The first example may be dismissed as t~e justifiable result of dealing

with immorally large integers. Now suppose we are computing an infinite

sum by the following formula:

oo L
l n =I n +l+R
1 l+n3 1 l+n3 L

and we know that to get the residual IRI < e then L ~ :_. Suppose we
1£

want e = 10-10 so l = 300,000. Consider the following innocuous program:

4-18

-

-

EPS = 10-lO

L = 3.0/SQRT(EPS)

INCREM = l

WRITE L, The sum of L= ... tenns is ...
SUM= 0.

1 DO 2 N=l ,L, l

EN= N

2 SUM= SUM+EN/(1.0+EN**3)

WRITE SUM

SUMINF = SUM+l.0/EN

WRITE SUMINF, The infinite sum is

Now the output for the program as written was:

THE SUM OF 300,000 TE~S IS USER CPU ARITH ERROR
I: DETECTED BY MTR, FL=007455

As it turns out, we had a division by zero. Clearly this could only happen

at line 2 if N=-1. But that can't be. N runs from 1 to 300,000.

After some detective work the user observed that by changing line 1

to read DO 2 N=l,L,INCREM the following result was printed:

THE SUM OF 300,000 TERMS IS 1.111640603830
THE INFINITE SUM IS 1 . 111643937163

What had happened? As originally compiled the incrementation of the

DO loop was done with the SX instruction with an 18-bit adder. 300,000

is so large that the 18-bit adder went through its entire range of positive

values, overflowed to its largest negative value, and continued to increment

until it reached a value N=-1, causing an infinite value on division.

4-19

4-20

The same compiler uses the 60-bit IX instruction to increment the DO

loop if a variable name is specified for the increment! So the modified

program produced a moderately correct result. But how are we ever to discover

bugs like this? The hardware designers did not make things easy for the

compiler writers, but there is no excuse for this!

Consider the AINT function on our system, which produces the greatest

floating point integer less than or equal to the floating input. The CDC

compiler produces

UX2 Xl,82

LX2 82
PX6 X2,0

NX6 X6

The left shift will nonnally cause a right shift because B2 is

negative. But if the integer is larger than 247, it will perform as a

true left shift, and the most significant digits will be lost, and the sign

may be erroneous as well. Again, the machine designers did not allow for

an overflow to inconveniently disturb the pipeline and the software perpe

tuated the folly.

This has been improved on in the RUNW compiler. An unnormalized

zero (characteristic= O) is produced in XO.

MXO l
LXO 59

then

FX2 Xl+XO

NX2 X2

This takes care of the problem. If the integer is a small one it will be

right shifted to align binary points with the zero. If it is large, the

-

-
zero will be shifted and the input unchanged, which is desired.

We have brought up the point of integer overflow to demonstrate how

untidiness on the part of the machine design induces carelessness in the

software and then by the users, because there is nothing to be gained by

being careful. The best way to handle over/underflow is to not lose infor

mation. and this can only be done if the registers contain more bits than

can be stored. Second best is to interrupt the machine if an overflow is

going to occur which would cause information to be lost. See Kahan's

SSD #159. We are going to see that there was less trouble on the 7094

from overflow than the 6400, even though it had only a tenth the magnitude

range!

4-21

Exercise: What should be done on the CDC 6400 to compare two 60-bit integers

to find the larger?

-

5. SOFTWARE CONSPIRACY AND THE COST OF ANOMALIES

We have seen what hardware flows alone can do. Let us now consider a

case of inept hardware and software conspiring against the user. This

particular case occurred on the IBM 7090. but something like it could happen

on the 6400.

What Does LOG Have To Do With Differential Equations?

A graduate student had developed a marvelous idea for boundary layer

control on wings of short take-off planes. He thought lift should be

enhanced by his idea. and had set up the appropriate differential equations

to check his ideas. Although he couldn't solve them analytically, he had

some information about how they should behave and approach a limit as the

independent variable went to zero. The limit was not calculable and

the approach may not be smooth (like l+ rx ~ l as x + O or

l+- 1-1 +1 as x+O).
ln -

X

r
limit + decreasing x

..........+---QI - X

He couldn't show analytically that the limit existed so he turned to

numerical methods.t

His coefficients misbehaved in a variety of ways so the standard

methods were inapplicable, and besides, his job was wing design, not

tYou solve a differential equation by breaking the space up into discrete
little chunks, and consider functions with a slope in those intervals. The
graph is replaced by a sequence of dots and this is justified if you can
show that as the mesh gets smaller, the dots approach a continuous curve
that is the solution.

5-1

numerical analysis.

So he did his work, but was unhappy because of the way that his

solution was behaving. Rounding errors did play a role. The solution went

toward -00 as the independent variable approached zero.

limit solution

Clearly, something was going wrong as the vertical axis was approached.

Since he was not a numerical analyst, he did the obvious thing, and

converted his program to double precision. For larger x, the solution

matched perfectly, but there was still that odd behavior near zero. He

decreased the mesh size, but the solution still went very far down. He

knew this was not the physical solution -- to be of any use at all it had

to stay positive.

By now he had used up lots of machine time, and seemed at the end of

what otherwise might have been a promising Ph.D. thesis.

At this time I [Kahan] was trying to debug a logarithm subroutine

used to calculate A**B by taking exp{B*A log(A)). For some values of

A and B the results were shockingly less accurate than others.

looking over his shoulder, I saw he was using a logarithm routine

and suggested he use mine, which was more accurate than the old. How much

5-2

more? My error was about .52 units in the last place and the old one's

error was about 3 units and it had other interesting difficulties.

So he used my program and the single precision results reached a limit.

but the double precision results continued to go down.

limit

single precision
,,

I

-+-:,--------x

' double precision

At this point I became interested. He was interested. of course; the

single precision answer said he'd get his Ph.D., the double precision that

he wouldn't.

He was trying to compute something like

f(x} = ln(l+x) , -1 < x < ~104
X

This function is really very well behaved, except near x = -1.

0 X

Strictly speaking, the point at x = 0 is missing. So use a power series
1 l 2 1- 1x +ye + ••• for -1 < x-1 in this range.

5-3

But this man had progranmed so that he could transfer his program from

the 7094 to a UNIVAC 1107, which he'd someday be using. They use different

word lengths. So he wrote:

FUNCTION F(X)

IF (X . LE. - l) GO (OUT)

Y=l.O+X
Z = Y - 1.0

he's thinking

X = .OOOOxfxx
Y = 1.0000xx
z = .ooooxx

so y=l+z, not l+x. If x issmall,I'vemadearoundingerrorand

I won't take the log of l+x but the log of l+(something else). Then

in dividing by x, I get the wrong thing. So I'll take the log of

l + something ÷ by that something. And since my function is continuous

5-4

and well behaved, I'll be near my point x and be on the graph of the function.

F = 1. 0

IF(Z .EQ. 0) RETURN
F = ALOG(Y)/Z
RETURN

END

He settled for F{z) instead of F{x) since z is not far from x.

If everything had gone according to plan, he'd have only been off by

half a dozen units in the last place, most attributable to rounding.

His reasoning should have been right but it wasn't. It wasn't right

in single precision because of the way the log routine worked.

If you want ALOG(F), F is reduced to the range l ~ f .::._ 2. Then

the following is computed:

f - /7l
f + ✓2

-
But ✓2 is not representable by a machine number. So when v'2° is off,

you are in effect changing f from what it was to something else. And

f is changed differently in nl.lTlerator and denominator. You are calculating

ALOG(F{l+e)) not ALOG{F). But he wanted to compute this for F close

to l. {l+e) is also close to 1 and so their logs are comparable.

So in single precision things went wrong in a systematic way and drove his

graph down. When he used my program, which didn't do this, the graph

straightened out.

But he said that the double precision answer still went down, and

after all, isn't double precision more accurate? In general that's true,

but the double precision log function, which did logs differently and

should have been more accurate, truncated in a funny way.

If x was tiny and negative, the wrong number got subtracted and

z was off by about 50%. That was the hardware conspiring.

This story pretty well surrmarizes how things look to an engineer

working on a thesis or building something, who doesn't want to understand

the equipment.

How Should We Code To Prevent Conspiracy?

We see that it would be good if floating point units computed correct

results and then rounded or chopped the result to fit in the word. Such

schemes exact a penalty in time which is onerous to engineers who are

designing to optimize a certain definition of perfonnance. The consequence

is that, from our point of view, the hardware is a set of compromises which

are more difficult to describe than the simple model mentioned. If there

is no guard digit of some sort, it becomes much more difficult to tell what

we can compute economically. It seems likely that any computation that

5-5

can be done with a guard digit can be done without, but the designing and

debugging of programs for certain computations becomes much more tedious.

Let us consider a calculation of a type colTITion in engineering practice,

that of the divided difference of a logarithm:

l - -
X

We've already seen how we can get very low significance in the computation

of log(x1) -log(x 2) when x1-x2 is small, even if x1-x2 is known

precisely. We would want to do this calculation differently if x
1

and

x2 agree to some number of figures, which is, however, a machine dependent

computation we wish to avoid, as it may not work on the next machine it is

run on.

We can rewrite the divided difference as

X

1
l og(-f-)

1 xl 2
x2 x,

= - ¢(-)
x2 x2

--1
X2

<t>(z) =~oz z - if z ; l

= 1 if z = 1

This code is now independent of references to significant figures.

But we might wonder what happens when z is near 1. Now z will be a

rounded quotient. We could have, using 4-decimal digit arithmetic,

z = .9998

X - = . 99989998 y

z - l = -.0002

!S__ 1 = - .0001002 y

log z = -.0002

log 2S. = -.0001002 y

5-6

Perhaps surprisingly, we get ~ = 1.000 in either case! We can show

rigorously that changing z by an ulp changes ~(z) by less than an ulp.

So rounding ; will cause no problem. Here we have an example of a calcu

lation where the intennediate results z - 1 and log z are accurate to no

significant figures yet the results are perfectly good, because the proper

relation of the intermediate results was maintained.

On CDC-type machines we can run into troubles in various ways. Z may

be compared to l and found unequal by an integer compare, and then z - 1

will be computed to be zero by the hardware.

If z < 1 slightly the answer could be wrong by a factor of two, when

z -1 is computed as z(l+r;) -1 (l+n).

However, these are merely hardware errors. Surely the software would

be written to ameliorate some of the flaws, or at least not make them worse,

or at least not introduce new ones! But such hopes are, alas, in vain. To

compute logs, progranmers often attempt to use mathematical identities

such as

log(z) = logd~p + log JI ,

When }~ z ~ 1 the power series expansion of this fonn converges rapidly.

Unfortunately it is not precisely representable, so that we actually

compute

z-f!:-e: {z+,;)- JI
y= 2 =---__,;;;;..

z + Jf + e: (z+,;) + ~

where

5-7

Instead of (l+A)log z, we get (l+A)log(z+s). When z is near one, ¢(z)

may not be computed accurately because the logarithm may not be very good.

If, in addition, the hardware computes z - 1 inaccurately, the results are

totally unpredictable.

5-8

1
z-1 IT z-2

The sane thing to do is to compute y = m if z > ✓ "2 and y = ~
z+ 2

if z < ~. This takes a very slight additional effort on the part of the

progranmer but it saves the user from having to worry about details of the

logarithm routine.

When designers optimize the speed without consideration of error, the

user may sometimes get wrong results for no apparent reason or he may con

clude that calculations such as extended sunmation can't be perfonned. The

user is tempted to prove theorems such as Viten'ko's [see 10] which seem to

be relevant to the hardware but really are not.

Regardless of how the hardware is designed, there will probably always

be tricks such as the cubic equation algorithm [see 17]. However, if we

design the hardware and software properly, it should not be necessary for

ordinary users to get degrees in numerical analysis in order to find such

tricks to solve their everyday problems.

Economic Cost of Anomalies

I don't object to the funny things machines do because they are so

wrong that they make life not worth living. We can obviously code around

them if we know about them.

I don't object because they violate mathematical aesthetics.

-

But I do object because these little flaws have an economic consequence

out of all proportion to the cost of extirpating them. And the economic

consequences are hard to uncover.

For example, the man above might have said that wing won't work and

gotten a thesis in something else; or he might not·have.

He was lucky, because the numerical calculation did not, in the end,

deflect him from his project.

It is very unlikely that a rounding error in a floating point operation

would cause a bridge to collapse, because people usually don't trust computer

results. They build prototypes and throw in fudge factors.t

I don't know of any collapses caused by rounding errors, and I'd be

as unlikely to know as the man who did it. How would you find out about it?

I don't know how often people have tried to simulate a difficult idea

and because of rounding errors, given up on the idea. Probably very often.

I've heard people discussing programs and methods used that wouldn't give

correct answers; they wouldn't be off by orders of magnitude, just by factors

like 1.325. For example, in differential equation solvers where they don't

know what step size to use, they used a fixed size -- which is too big in

one part and too small in another. But these so1vers are imbedded in the

program and are never noticed.

There is one example of a bridge collapsing because of small (not rounding)
errors, the Quebec bridge in Victorian times. The designer neglected the
deflection of the sections under their own weight while the bridge was
being constructed.

The side sections sagged before the center suspension section was added.
It collapsed.

The only aircraft I know of that crashed because of a computer program
is the Lockheed Electra. There it was not a rounding error but a mistake
in the organization of appropriate subroutines.

5-9

Then there's a man, say a psychologist, who doesn't understand how

that electronic stuff works, who is trying to debug a program, a fairly

simple one of less than 100 statements. You give him a list of all the

funny little things the computer does and he spends hours trying to find

which one causes his bug. But of course his error was in a format statement.

5-10

So you see that the costs I'm enumerating are real economic costs. They

are costs to people and to firms. And they have nothing to do with a rounding

error committed in somebody1s program, that he may not have anticipated.

It might be that he now has extra things to look for. He has to fight the

machine instead of getting help from it.

That's why I'm opposed to what happens on the 6400.

Question: I had worked on a numerical subroutine for solving differential

equations. People using it would typically choose a step size and then one

10 times smaller to see if that changed the results. But the program kept

blowing up mysteriously. It appeared that when funny things happened, they

were really funny. The error propagated in rather impressive ways.

Answer: You're saying that errors will be accompanied by symptoms so

obvious that one could hardly fail to notice them if he was at all conscientious.

In response to the claim, made by the author of a matrix equation solver,

that anyone's matrix that wasn't solved by his routine was so unlucky that

he'd already been run over by a truck, I found a 2 x2 matrix which, when

put into the iterative solver gave what looked like a correct solution

(all tests were satisfied). but not even the leading digits in that solution

were correct. I don't think people know when an error is committed.

There are times when in treating continuous functions the intermediate

results may be discontinuous. And these discontinuities may be important

and you'd like to be told about them. So you depend on laws of arithmetic

that may not be honored by your machine. There are Fortran programs that

run on a 7094, 7090, 85500 and GE 645, but they will not run on a 6600 and

no one has found out why.

There may be a law of diminishing returns in hunting for these funny

errors. If we can come up with a rationale for dealing with large classes

of these errors and if this thinking isn't too devious or subtle, you'd

hope others would come across that rationale and thereby avoid the errors.

The cost of weeding out these errors is negligible compared to the

cost of the whole machine. You may end up with a machine that is better

than it has to be, but not much better.

5-11

6-1

6. EXECUTION-TIME ERRORS

We leave the CDC 6400 now to discuss more reasonable methods of dealing

with occurrences such as overflow. We will refer to the Toronto system

for the 7094 described in Kahan's SHARE Secretarial Distribution #159 (1966}.

We can distinguish between scheduled and unscheduled errors. A nega

tive input to a square root routine which makes some provision for negative

inputs is a scheduled error. Such errors are a matter to be decided between

the user's program and the square root routine. An unscheduled error is one

that occurs when no explicit provision has been made for dealing with it.

Divisions by zero in many programs are unscheduled. A linear equation solver

may set a flag if the system is too nearly singular. Scheduled errors

happen to users who check this flag. Unscheduled errors happen to users

who don't.

One would like to specify options for errors. In the square root case,

the most useful output for a negative number might be -✓-fxT for some

users, lfxT, O, or job abort for others. Some users want to know how

the negative input came about. They would like to know the statement

number and Fortran subroutine name where the negative square root was

attempted, and the nest of calling routines, if any. Others expect an

occasional negative from rounding errors, and don't care which small number

is output as long as they aren't kicked off and their output is not blemished

by an error trace. How many options should we offer? We could go to the

extreme of a PLl ON condition. This is generally too expensive. Error

options are part of the environment in which subroutines are executed and

would have to be saved and restored on every call and return. For instance,

a user may specify that certain action is to be taken on an overflow, and

later call a quadratic solver. The quadratic solver may generate overflows

in intermediate results with which it should not bother the user. But if

the final answer deserves to be overflowed the user-specified action should

occur. Therefore the options should be so simple that the subroutine should

be able to determine what the user has specified and act accordingly.

Suppose then that, in the square root routine, the user may specify

either -/fxT for a negative x or be kicked off the system.

IF(KICKED(OFF))

Then we should arrange for kick-off to be less of a disaster than it

commonly is. At Toronto there was the IF(KICKEO(OFF)) statement. KICKED

was a subroutine which returned a logical value FALSE. OFF was a para

meter which was printed out on kick-off to identify the kick-off routine

to the user.

During normal execution the action of the KICKED routine was to

maintain a pointer to the conditional part of the last kicked-off statement

executed. The conditional part of the statement was not executed because

KICKED returned a value FALSE. When an error warranting a kick-off

occurred, buffers were flushed, normal diagnostics were provided, and

control was transferred via the pointer to the conditional part of the

statement and a STOP was written over the next following statement:

Before

3 IF(KICKED(3)) WRITE Save Tapes!
NEXT STATEMENT
X=SQRT{-3)

After

3 IF(KICKED(3)) WRITE Save Tapes!
STOP
X=SQRT(-3)

6-2

-

-

Then execution could continue until another kick-off occurred, or the

post-kick allowance of, say, 10 seconds and 300 lines, was exceeded. One

could use the conditional part of the statement in any usual way, for

printing out the values of key variables_, issuing operator instructions,

etc. Thus it should be possib1e to save what is necessary to restart a

program that, for instance, had simply run out of time. The KICKED

routine cost less execution time than a divide and could therefore be used

quite freely. No change to the compiler was necessary.

What If They Don't Want to Kick Off?

With kick-off now less of a disaster, there remained the choice of the

other options. 1./0. was treated as an overflow, but 1/0, 0.0/0.0, and

0/0 were always a kick-off. More elaborate options existed for overflow.

The default silent option was to set the result to the number of the same

sign largest in magnitude. A system flag would be set which could be turned

off by testing. If no test occurred the system would print

LAST UNREQUITED OVERFLOW WAS (location}

at the end of the job. A similar message was available for underflow. A

logical extension to this system would be to include a message

FIRST UNREQUITED OVERFLOW WAS

The cost of the system is negligible.

In the printing mode the same events occurred and, in addition, every

overflow or underflow generated an i!l11lediate message with details as to

cause and location. The user could also arrange for automatically switching

to silent mode after printing a certain number of messages.

6-3

Underflow on the 7094 was comp 1 i cated by 11spurious II underflows. The

acctanulator AC and its extension MQ both had characteristics, and MQ

could underflow. It would be reasonable to set MQ to zero only when soft

ware double precision was being done, which was a holdover from the 7090

made obsolete by the double precision hardware on the 7094. Consequently

6-4

a warning was issued not to use software double precision and MQ underflows

were ignored.

I]] D:J =~h~a;..,.rl _~___,I i.;.;.~h~a,;.J.rl _---.-__.
AC MQ

Another possibility of underflCM was in the remainder following a single

precision divide. There was, however, no way to use the remainder in Fortran.

In other code the P and Q bits of AC could be thought of as a leftward

extension of the characteristic of AC. Consequently this underflo.'I was

also ignored.

Most people don't want to be bothered with underflow messages and are

satisfied to set the number to zero and continue. Rather than do something

wrong without recording the fact, the unnonnalized mode of treating under

flow was developed. Unnormalized numbers have the smallest possible charac

teristic and unnonnalized integer parts. Underflowed numbers are treated

as unnormalized when possible, so that there is quite a range of very small

numbers with gradually fewer significant digits. The assumption is that if

it is all right to have underflows set to zero, then it is just as good to

set them to small numbers. In the unnormalized mode no UNREQUITED UNDERFLOW

message is produced. HOt1ever, the unnormalized numbers were quite persistent,

and, if the user attempted to divide by one of them, he would usually get

kicked off. The existence of unnormalized numbers at the end of the -

calculation was a signal to the user that he had not been correct in assuming

that his underflows could be safely set to zero.

6-5

An application of this technique was in computing scalar products E a.b .. , ,
By doing the multiplication and addition with underflows treated in unnor-

malized mode the accuracy of the result could be easily ascertained by check

ing if it was nonnalized. If so, it is as accurate as it deserves to be;

if not, it had underflowed, but the test need be made only once, at the end

of the loop.

The effect of unnonnalized mode was to soften the impact of underflow.

The calculation discussed previously which yields about 3 on the 6400 would

yield nearly the correct result of 1 on the 7094 in unnonnalized mode, and

the answer would probably have been unnonnalized as a warning.

There are some calculations in which overflows occur inevitably, as

in symbolic evaluation of large detenninants. Counting mode was invented

to allow a limited range of these computations. The user would designate

a cell for counting overflows. Then every time certain operations occurred,

that cell would be incremented if overflow occurred, and decremented if
(a.+b.)

underflow occurred. For instance, to compute IT (x~+y~) , the denominator
J J

would be computed, and the cell incremented each time an overflow occurred

on an add or multiply. The cell would be reversed in sign and the numerator

computed. At the end of the calculation the counting cell would indicate

the power of 2256 which should be applied to the number actually in storage.

With no testing in inner loops, this technique costs the user only if an

overflow actually occurs. Most of the computations in counting mode never

actually overflowed or underflowed, but the counting mode made it possible

to allow for the possibility in a rational manner without jeopardizing the

entire calculation.

6-6

The 7094 hardware facilitated a reasonable treatment by interrupting

before information was lost. The correct result could always be inferred

because the extra fnfonnation was always preserved in the left bits. Further,

the overflow/underflow interrupt had priority over all others, so that this

infonnation was not lost. Because the system was written with a flexible

set of options, no users ever found it necessary to supply their own overflow/

underflow handling routines.

7. A PROOF OF A NUMERICAL PROGRAM

In a previous lecture [1] we described an algorithm for solving the

quadratic equation ax2 - 2bx+ c. Today we shall write a program for such

an algorithm and see what can be proved about the output of the program.

We will assume that every arithmetic operation, including square root, is

computed correctly and then chopped or rounded with at most an error of one

unit in the last place, although slightly weaker assumptions would suffice.

For our purposes today we shall ignore overflow and underflow.

Recall our algorithm:

d = b2 - ac

if (d > 0) X = b+ sign(/cf,b)
BIG a

X = C
LIT axBIG

if (d ~ 0) x± = ~ ± ;y.:a
We code it as follows:

D = B'IH-2-A-.C

IF (D.LE.0.0) GO TO l
C real distinct roots RP, RM

S = B+ SIGN(SQRT(D),B)
RP= S/A

RM= C/S
GO TO ...

C complex or coincident RR± r-TRI
l RR = B/A

RI = SQRT(-D)/A

For analysis purpose we introduce Greek letters after each operation.

Each Greek letter is bounded by the maximum relative error due to chopping

or rounding. In the example of four digit arithmetic the bound would be

_ l~QQ0-1000.5 = 5 X ,o-3
1000

7-1

Lower-case Latin letters represent values stored in cells with corresponding

upper-case names.

CDC arithmetic does not fit this mold. We would have to write

d = (b2(1+µ1)(l+cr1} - ac{l+µ2}(l+cr2}} but this does not affect the present

analysis.

d > 0 real root
s = {!bl +(l+p)/a){l+a)•sgn(b)
r+ = (l+o1)s/a
r _ = (l+o2)c/s

d < O complex or coincident
rR = (1+03)b/a

r 1 = (l+o4){l+p)/:d/a

Let us investigate how these errors affect the results. Suppose N is
24 a large integer, say 2 + 1 on the 6400. Then try to solve the equation

(N+ l)x2 - 2Nx + (N-1) = 0

whose roots are l and ~~~- Suppose we make no other rounding errors than

the following:

In this case it would be quite possible to obtain b2 and ac rounded

to the same value. N2 = 248+ 225+ l, and N2-l = 248+ 225. N2 would

probably be rounded to N2-l, with an admittedly small error. However, now

d = 0 and if no other errors are made the computed roots equal

7-2

-

-
N 1 l • l -24 h f h N+l = - N+l :;: - 2 . T ese "roots" are equidistant rom t e precise

roots l and l - 2-2- 24. These computed roots differ from the true roots .
by about 224 units in the last place! Clearly we can't make the claim

that our program delivers the roots of the given quadratic correct to

within a few units in the last place.

Now let us see what equation we did compute the roots of. This is

(N+ 1)x2 - 2Nx + (N
2

) N+T

We see that the relative difference in the coefficient c is l 1+:-:r.
N -1

That is, the co~uted roots were the correct roots of an equation whose

coefficients differ from the original ones by less than one unit in the

last place. Unfortunately, this statement also is not true for our program

in general.

Consider any equation such as

2 -50
X - 2•10 X - 1 = 0

7-3

1 -100 ·1 On any normal machine we compute the roots to be ± 1 , because O + 1 =: •

These are the correct roots of the equation x2 -1 = 0. Clearly the coeffi

cient b of this latter equation differs by a substantial relative amount

from ,o-50,

Fortunately, we can say something definite. The roots given by our

program differ by a few units 1n the last place from the true roots of a

quadratic whose coefficients differ from those input by at most a few units

in the last place. Let a, b, c represent the original coefficients and

r± the roots delivered by the program. Then there are r± which are the

precise roots of a quadratic with coefficients a, 6, c, and in each case

the ~ perturbation is a few units in the last place. In a picture:

(input) = a,b,c i..-------~

a,fi,c

coefficients of
equation with
roots r ±

=

=

r±

. .

r±

true roots

(output)

Note that, in general, the choice of the intermediate quadratic is

not unique.

~
C =

r = I

Let us analyze in detail the simple case a= a, b = b,

1+µ2 ~ ~ ~ ~
(l+µ)c. Then if d ~ 0, r± = rR ± ir 1, rR = (l+o3)rR,

l

(l+o4)(l+p)✓(l+µ1)(l+µ2)r1 . Now when d > 0, define

e = (s _) 1 (I t; I + Ai 2 -ac) - 1
(1-tu)sgn(b)

= p✓{l+µ1)(1+a) + (µ1+cr+µ1cr)/(l+ ✓(1+µ1)(l+cr))
1 + jbj ✓(l+µ 1 J(l+a)/d

~ (p+ ~1 + ~)/(1 + lb///d)

and

Thus e is of the order of a few units in the last place. With this

definition

That is, if we follow through the algorithm we do find roots that differ

from the correct roots of the altered input by a few units in the last place.

7-4

We now know that the roots are approximately those of an altered

quadratic. But how close are they to the roots of the original quadratic?

Clearly it's the change in c that can make our results bad.

Let us now look at the problem from the point of view of perturbation

analysis. How much could the roots possibly be expected to vary if we vary

the input coefficient c? In particular, compare the equations

x2 -2bx + c with roots R±

x2 -2bx+c(l+y) with roots r±

~
Theorem. I 1 - ;:1 ~ /fvT(./fyT + /1+[yj) .

For small y, the relative difference is about /fyf at worst.
~
r+ ~

Proof. Let o± = 1- ~ . Then r± = (1-o±)R±.

7-5

Using the facts r++r_ = 2b = R++R_, r+•r_ = c(l+y), and R+•R_ = c,

wededucethat R+o++R_o_=O and (1-o+)(l-o_)=l+y. Let z=~-
+

Without loss of generality let IR_I.:, !R+I so lzl < 1. Then

lo ! = 1-zo I < lo I so we only concern ourselves with o . It satisfies
+ - - -

(1 +zo _) (1-o _) = 1 + y

or zo:-(z-l)o_ + y = O

~ The two roots for o_ correspond to the roots r±; we take that

corresponding to the root o_ smaller in magnitude.

Our problem may now be stated as follows:

Given !rl > O, lzl ~ 1, ITl2 ~ lrl determine maxlo(z,T)I where

o(z,T) is the smaller root of

o(z,T) is a holomorphic function of z except for those critical values

where both roots of(*) are equal in magnitude. The critical values are

those satisfying

2
A = 4ZT - l > 0

(z-1) 2

These z lie on a curved arc C traced by

X. > 0

Since part of C must lie in the disk I zl < 1. Oefi ne 0 to

be the domain obtained from the disk by cutting along C. Here are some

examples.

C

>..=O >..=O C >..=O

1-6

•)..=oo

D

C is the arc.

0

2
T < -1 C is the fallen question

mark

C is the circumference plus the line segment

Generally, either {z: lzl = 1} c C or C intersects the circumference

lzl = l in just one point, at z = 1, .>.. = +00 •

Certainly o(z,1) is a holomorphic function of z inside D and

continuous as z approaches the boundary of 0. Therefore the maximum

modulus theorem applies {Titchmarsh, Theory of Functions. pp. 166-168) so

that the maximum of lol on D or on /zl < 1 occurs on the boundary of D.

-

If the maximum is achieved when lzl = l then lol 2 .::_ ITl2 with

equality when z = 1. If achieved on C inside
2

lzl<l, lol 2 .::.1rf,
2

because the product of the roots is ~. Hence Io I 2
.::_ 1-r l 2max ! ~ .

C
But on C,

where t = J..tl < 1-rl
✓1+" -

I ½1 .:. (IT I + A+ 1-r I

2} 2
.:. (Im+ ✓1 + I y I)

2

so lo1
2

< jyj(✓m+ ✓l+jyj) 2 , with equality when y ~ 0 and

z = (./y+ ✓T+y)·2 . (Then r+ = r_.} So the perturbation of y is bounded

by

~

f 1 - ~I .:, I o I .:, ITYT(/ITT+ ✓l+ I y I) Q. E.D.

This bound is certainly the best possible, independent of the data,

7-7

and it is achieved when the roots are nearly equal. In this case the

discriminant is very small and inaccurate because cancellation has revealed

previous rounding errors. We could get a much better bound in many cases

through a more detailed analysis of the bound as a function of the coeffi

cients a, b, c. To be useful we would have to incorporate a possibly lengthy

computation of the bound into the quadratic routine. The user could then

call upon this part of the routine if he wanted to know how good his roots

are. Fortunately, as we shall see, there is a prograrrming trick which we

can exploit in this particular problem so that the user need not perform an

error analysis, and we need not compute a complicated bound, because we

will be able to show that an acceptable fixed bound now applies.

Analysis of Round-off for the Quadratic Equation Solver

We have seen a program to solve the quadratic equation that is good in

the sense of delivering very nearly the correct answer to a problem that is

very nearly that which we wished to solve. We have also seen that in the

worst case a small relative perturbation y in the coefficient c can

cause a much larger relative perturbation ✓fil in the roots. How can we

get rid of this complication? The one critical computation is that of the

discriminant:

The relative precision of the entire calculation can be as bad as the rela

tive precision of the discriminant. When b2 ~ ac we can't, in general,

write

for small o. What happens if we have double precision available? The

product of single precision numbers is precisely representable in double

precision. Further, if the double precision subtract rounds after normali

zation, then µl = µ2 = 0. Then we can write a program that will deliver

nearly the roots of the given equation! However, along the way certain

difficulties arise. For instance, we might try

DOUBLE PRECISION DD
DD= B•B
D = DD-A*C

We would hope then that DD would be a double precision number holding the

product b2 precisely, and D would be the double precision difference

7-8

rounded to single precision. For early IBM Fortran implementations this

was actually done. The compilers checked the context before discarding

the second half of the doubly precise product of single precision numbers.

More recently the previous code would be compiled so that the second half

7-9

of the doubly precise product is discarded without checking the context first.

This procedure is now built into the syntax of the language. One way of

dealing with such compilers is to write

DD= DBLE(B)••2

D = DD - DBLE(A)•DBLE(C)

Now the program appends zeros to A, B and C, and then does full double

precision multiplication to yield double precision products. Most of this

work is not necessary for our purpose and in fact consumes a great deal of

time: with software double precision, the cost of the three double precision

operations will far outweigh all the other operations in the program, except

the square root. A similar waste becomes critical in, for instance, scalar

products of vectors. If single precision is used the error in the sum
N
I x.y.(l+,.) will be such that the computed sum will be the product of

j=l J J J

vectors, one of which may have perturbations as large as N units in the

last place of each element. If we do double adds on the double products

N 2
we would get j~lxjyj(l+,j). The result then would be the product of

vectors perturbed by N units in the double precision last place, which is

ignorable. Consider the following results on inverting a lOOxlOO matrix

on a 7094 with hardware double precision:

Arithmetic

Single Precision

Double Precision only for accu
mulation of scalar products
Double Precision Throughout

Time Backward Error Bound

7.5 seconds 100 units in last place
per element

11 2 ulps

15 800 units in last place
of double precision

Note that using double precision throughout requires twice the storage space

for the matrix, a matter of 10,000 cells on a 32K machine in this example.

7-10

On the 360 the hardware is available but is not useable in Fortran. 360 short

word arithmetic only carries six hexadecimal digits. Loss of 100 units in

the last place means losing 2 of the 6 figures of accuracy. We would like

to use short word arithmetic to conserve storage, but a mistaken principle

in the compiler forces us to use double precision to get good s1ngle preci

sion results.

Ideally the compiler should never lose infonnation before consulting

the context. We would like to have some means of specification such as

which means: treat the partial results as double precision until the assign

ment to D is made, when type conversion to single must occur. It doesn't

matter so much which default rules the compiler may follow, as long as there

is at least an option to do what we want. Explicit type conversions are

done in many other contexts, why not this one?

We are almost to the point of writing

when a new problem is discovered. Most machines don't carry a guard digit

for double precision subtraction. The double precision instruction in the

7094 and CDC machines does not give the desired result but returns us to

the situation

At least µ1 and ~2 are now a few units in double precision. This means

that /lYT is a few units in single precision. We are now able to announce,

perhaps, that our roots are correct to a few units in the last place (ulps}.

When we make such an announcement it will be interpreted as meaning

that the results are real if the roots are real, and complex if the roots

are complex, and that each nll!lber printed is correct to within a few ulps.

Recall, however, that our perturbation analysis was concerned only with the

magnitude of complex numbers. Nothing was said about the real and complex

components. Indeed, there is no way of showing, using our usual error

analysis based on bounds on u1 and µ2, that the complex part will be

computed correctly to a few ulps, or even that the discriminant will not

change signs due to errors.

Yet our program will run correctly on nearly every reasonabl,e machine.

The only way to understand this is by a rather devious line of reasoning.

First we shall show that real roots will be computed essentially correctly.

Real Parts Remain Real

Suppose then that b2 = ac. Then b2 - ac = 0 because the subtraction

should be performed precisely. Now suppose that b2
> ac. Since we expect

the arithmetic unit in a reasonable machine to be monotonic, we will find

that computed (b2-ac) ~ computed (ac-ac) = 0. On such a machine there

is, therefore, no possibility that a pair of real roots will be represented

7-11

as complex. Further, great relative error in b2-ac occurs only when this

quantity is nearly zero and therefore will not seriously affect the accuracy

of lbl + /22-ac, so that the real roots will be nearly accurate.

Now consider complex roots, b2 < ac. By monotonicity again, computed

(b2-ac) .::_ 0. Therefore the real part will always be computed independent

of the discriminant and will be computable essentially correctly.

Accuracy of Complex Parts

It is still unclear whether the complex parts are correct to a few ulps.

7-12

Suppose b2
< ac but they have the same characteristic. Then the subtraction

is performed precisely, and the complex part is OK. The worst situation
2 2 is when b < ac but computed (b -ac) = O, for then the complex part has

vanished with great relative error. This situation would have to occur in

a shift. Consider a right shift of one.

ac: 2m x llOOO· .. • .. QQOO!

b 2 : 2m-1 x ll 111 • .. • .. 1111 I

2 b can not be all ones. Remember, it was formed from a single precision

number. A long string of ones is just less than a power of two. One way

of getting it would be to square a number just less than a power of two,

b = 111 ••• 11. Then we would have:

ac: ~ IJ ool IQ ol

2 ac-b

Pl 1 • 111 IC>·· .. • .. ·Q 1 + shifted off

P· ·Ol! ©· 01

The difference would not become zero, barring underflow, and in fact would

be rather accurate. The other possibility is that b is just less than

--

the square roots of an odd power of two. Now a number just greater than

✓1/2 would produce a square containing a power of two plus some other

things. A number just less than ✓l/2 would square to a number containing

one less significant bit than the first, and would therefore be left shifted

one bit in normalization, causing a zero to be inserted on the right. In

the subtraction ac-b2 the right shift would simply shift out a zero, so

no infonnation would be lost and the difference would be correct. Conse

quently we can conclude that if b2 ; ac then the difference will be com

puted correctly to single precision, even without a guard digit. There are

certain machines in which double precision is done in software. These

machines sometimes lose two digits instead of one in the right shift, and

the previous analysis may not be valid.

The peculiar analyses are necessary since one might be disinclined to

believe that a quadratic solver could give the imaginary part of complex

roots correct to a few ulps, based on a certain model of arithmetic. This

model is not categorical, so in particular places we must invent special

analyses to understand what is happening. We shall see in the next lecture

that loopholes in our rules about rounding will allow us to perform calcu

lations that are otherwise provably impossible. The reason poorly designed

arithmetic is bad is not that the error is slightly larger, but that it is

so often uncertain, in the sense that we must either expend substantial

energy in detailed investigations of the type we did here or in tedious

programming around the uncertainties, which increases the likelihood of an

error and consequent cost of the final program.

7-13

8. MODIFYING THE QUADRATIC EQUATION SOLVER
TO AVOID UNNECESSARY OVERFLOW AND UNDERFLOW

NCM we will discuss how to cope with over/underflow in solving the

quadratic equation

Ax2 - 2Bx + C = 0

The flow chart will not indicate where double precision is needed for the

accuracy we want, as that aspect of the problem has been covered already.

The object here is to write relatively simple code to handle over/

underflow, for most machines. Some choices indicated in the flow chart

will have to be discussed with care, to see if choices can be made that

follow the desired restraints. For example, can an appropriate scale factor

S be found so that A/S and C/S will never overflow or underflow?

Can overflow and underflow at intermediate steps be handled adequately?

On the CDC to suppress abortion upon using an infinite operand requires a

control card. You cannot revert to the nonnal mode at some later stage in

the computation. If you operate in the nonnal mode, then you could not take

advantage of someone's program that handled over/underflow so nicely that

you could almost imagine that it hadn't happened. In this quadratic solver,

the writer might all°"' the program to handle overflow, but a user may want

to be kicked off when that happens. Then you'd have to be careful never

to use quantities which may have been set to infinity or indefinite; you'd

have to do a large number of tests. Not all the tests will be indicated

on the flow chart, but you'll be able to see where they should go.

8-l

Flow Chart: to solve Ax2 - 2Bx + C = 0

Scale factor

under

= sma~_j

A'= A/S
C' = C/S

8 1 = 8/S
0 = (B 1

)
2 -A 1 C'

0 < 0

Yes

Special cases

Yes

over

S = big

S must be chosen so that
neither A' nor C' can
overflow or underflow

Yes

D > 0

Real Roots
Rl = (0.5*C)/B
R2 = 2(8/A)

F = B' +SIGN(v'Tf,B')

Rl = F/A'

I R2 = C' /F

canplex or coincident root
RR = B/A

R. = ✓-D/A'
1

8-2

Special Cases A= O or C = 0

There is a difficult question in what is meant by A= 0 on the CDC.

A might be one of those tiny numbers that looks like zero to the multiply/

divide box but not to the add box. When you decide 'is A= O', you're

8-3

bound to disappoint somebody. You have to adopt a convention and stick to it.

Question: Wouldn't you look at the program and see if you were going

to use A in multiplications or additions, to make your decision?

Answer: Yes, that is one rationale. But remember that that is of

almost no consequence to the man who will use your program to solve a

quadratic and who doesn't care how it is done. A coefficient that is zero

to you may very well not be zero to him.t

My feeling now is that numbers that the multiply unit considers zero

should be set to zero. So instead of writing IF(A .l!Q. 0), I would write

IF(l.O*A .EQ. 0).

Scale Factor S

Having ascertained that neither A nor C is zero to the multiply unit,

we can compute S. We will see later what value K must have, but for now

simply note that S is roughly the geometric mean of IACI, The actual

value chosen for S requires care. In the attempt to evaluate S, over/

underflow may occur, but that actually is not serious. The object is to

scale the whole equation by dividing through by S in order to insure that

the new A*C is a modest nt.mber close enough to 1 so that if the new (8)2

overflows, we know that AC is negligible compared to s2. On our machine,

AC could be ~lO±SO and that would be close enough.

trt is a design flaw of the CDC that the multiply unit will allow you to
generate a number with a zero characteristic and non-zero integer part (by
successive divisions by 2), but then the unit will not accept that number
as an operand.

An over/underflow may occur when computing S (to detect that requires

tests on intermediate products). The final result for S must be a power

of 2 so that dividing by S will not introduce round-off errors.

Over/Underflow in S

If we get an overflow, that means IACI is a huge number and S could

be taken as any big power of 2, say 2600. Overflow means that both A

and C are greater than l; when we compute A/S and C/S, neither of

these can underflow. A' and C' may still be large, but their product

cannot overflow.t It must be far enough below the overflow threshhold that

if (8 1
}
2 overflows, A1C1 is negligible. (Actually, (B1)2 could not

overflow after such a huge scaling).

Question: It's not clear to me that a single S will do.

Answer: There is no single S. If S overflows or underflows, you

don't choose S according to the formula.

Question: I meant a single S in any one situation.

Answer: That can be done. I'll indicate how to do it and leave the

details to the students.

An underflow in computing S indicates A*C is very tiny. That means

A and C are both less than 240. It is now enough to make S a small

number like 2-soo_ Then computing A/S and C/S will cause no serious

problems. Computing B/S may overflow now, but that will be tested for

further on in the program. If B' overflows, 8 12 will also and that will

be caught later (if you are running in the mode that allows you to use

infinite operands).
-l.

'consider A= 21022+48, C = 21022+48, AC= 22044+96 overflow.
If S = 2600, A'= 2422+48, C' = 2422+48, A'C' = 2844+96 in range.

8-4

--

-
Overflow in 8 1 =8/S

If 8 1 overflows, then (8 1
)
2 is so much larger than A'C' that we

can neglect A'C' compared with 81
• The roots then are relatively simple

to compute:

What If (8 1
)
2 Overflows?

Using double precision to compute O = (8 1
)
2 -A'C' can lead to one

problem.

You have computed 81 and checked that it did not overflow. So you

go into double precision to compute D and then check if it overflows.

8-5

However, if (8 1
)
2 overflows, you will get kicked off. 8 1 is now

double precision. When you multiply the two upper halves of 8 1 you generate

an infinite operand. Then when you compute an (upper half)•(lower half) and

try to add to the upper product, you pick up an infinite operand and get

thrown off.

Solution: You must compute (B1
)
2 to single precision first and

check for overflow. If it overflows, you know D will. If (81
)
2 doesn't,

D will not overflow either. Unfortunately, you will often compute (81
)
2

to single precision and then to double precision as well. Or else you run

in the mode that allows infinite operands.

Question: What if (8 1

)

2 -A 1 C1 overflows but (8 1

)

2 doesn't?

Answer: It will not happen that (B1
)
2 is so close to overflowing that

adding a reasonable number -A'C' will push it over. There will be bounds

on A'C' to insure this.

2-1024+47+96 < IA'C'I < 21022+48-96 t

If A'C' < 21022+48-96, I cannot add it to a representable number and

cause overflow. I don't want (81)2 to underflow and still be significant,

so set the lower bound on IA'C'j to 2-1024+47+96_

The approximation when S over/underflows is crude because we cannot

tell if AC overflowed by a little or a lot. A'C' could be ~2900, but

that is still in the acceptable range. If (81)2 overflowed, A'C' can

be thrown away without any more than a rounding error in double precision.

Then the approximations Rl and R2 are correct to single precision.

There could be a problem in Rl = ~/8, if 8 is huge and C is tiny.

It is important to form the product k 2 first and then divide by B. If

B is so large that underflow occurs, the root deserves to underflow. Divide

C by 2. Then if underflow would have occurred in dividing C by B, it

will occur in dividing f by B. You find out if f/B underflowed by

testing if it is zero.

In computing R2, 8/A cannot underflow, so you won't get a zero here.

If B/A overflows, you may be kicked off the machine when you compute

2(8/A); you have to be careful. You cannot use the primed values to compute

R2 because 8 1 may have overflowed.

Computing S

I have to choose K (see flow chart) in such a way that if IACI is

in range, the intrusion of the scale factor will not cause difficulties. In

getting to the point where D didn't overflow, I must be sure that A'C'
t
overflow threshhold = 21022+48

underflow threshhold = 2-1024
+47 (smallest normalized operand for add box)

8-6

could not have overflowed or underflowed.

The problem is to get !A'C'I into the range

2-1024+48+96 < IA'C'I < 21022+48-96

Suppose

A = 21022+48(l - r 47) 1 arges t operand

c = 2-l0 24+48 smallest operand
(2- 1024+47 is zero to multiply box)

In this extreme case, I dare not divide A by a number less than 1, nor

divide C by a number greater than l. Hence S must be 1 here. This

puts a condition on K.

AC::: 296-2

2-KAC ::: 296-2-K
to within a unit in the last place

Now I'll take the square root and do something to it and I'd better get 1.

I want a number bigger than 1 (= 2°), so that when I take its SQRT

and throw digits away, it will be 1. I don't want a number bigger than 2

after taking the square root, so the original number must be less than 4,

or less than 22. In exponents of 2:

So we have

or

0 < 96 - 2 - K < 2

96 - 2 - K = l

K = 93

That's the only value of K that will work on the CDC.

Question: You pulled the numbers A and C out of the machine and

got one particular value for K.

8-7

Answer: If that one case is to work properly, K must be 93. Now

the question is, will that value work for all other numbers?

Does K= 93 Work For All Other Numbers?

The approximation for S means I compute 2-KIACI, take its square

root and truncate it down to the next lower power of 2; that is, throw

away the last 47 bits of the word. That is 2L. We have just verified that

if A and C are at opposite extremes of the range, S = 1.

Question: You're making some assumptions about the SQRT routine,

that for numbers near l you don1t end up too far down.

Answer: Let's see what1s happening. A= 21022+48(1-2- 47),

C = 2-1024+48_

2-931ACI = 296-2-93(1-2-47)

/2(1-2- 47)(1+E) ~ /2 ~ 1.4

It is hard to see how any machine could be so far wrong on /2 that when

you chop you get a number other than 1.

8-8

Now it is necessary to see that nothing goes wrong when A and C move

from these extreme values. Let A= 21022+47_ It has the same characteristic

as before but is now a string of O's instead of l's after the high order 1.

Then AC is reduced and the initial approximation of S is reduced. But

S itself must not be reduced; if S < 1, A/S will overflow.

When I take Ir and throw away digits, nothing bad will happen. By mono

tonicity, as long as 21022+47 ,::. A,::. 21022+48(1-2-47), nothing goes wrong.

We have to do the same check for C in its appropriate interval. As

C increases, S cannot decrease, but we cannot allow S to increase such

as to make C/S underflow. An argument similar to that for A will do.

The cases for A and C not at the extremes work out more easily.

The_point of this odd argument is that by an artful choice of constants,

which have to be verified for each machine individually, you can manage to

have relatively few tests for over/underflow. We've discussed most of the

tests except for the last ones to see if the roots over/underflowed.

Test For Sign of D, 0 < 0

You have complex or coincident roots and compute them in the obvious

way.

RR= 8/A or B'/A'

If B/A over/underflows, you deserve it.

D is representable without over/underflow, so the same is true of ✓-0,

unless D is one of those numbers that is zero to the multiply box. Then

the result depends on the SQRT routine. But that cannot happen since

A'C' has been scaled to be nowhere near the underflow threshhold. Even

cancellation from (81
)
2 cannot take you near enough to the threshhold to

bother the SQRT. You could get exact cancellation, but that is alright.

Notice that if you had some decent way of turning off the spurious

over/underflow responses, you could run in that mode until the test on D

had been made. Then you could restore the mode wanted by the user before

computing the actual roots and if he wanted to be kicked off he would be.

8-9

The only over/underflows that occur now are those that deserve to happen

because the roots over/underflow.

0 > 0

The roots are real and distinct.

First you have to compute

Observe that F cannot overflow or underflow. We know (B1
)
2 didn't

overflow. Therefore 2B' cannot (v'i5" ::::: B'), or B • + ✓A I C' cannot

(YD~ /ji."lCT, remember the range for IA'C'I).

Now we compute the roots and they could over/underflow.

Rl = F/A'

R2 = C'/F

If either of these over/underflows, it deserves to.

About the Program

Observe that this program has a relatively simple flow chart, in that

the tests are to some extent minimal. It is also getting close to being

machine independent. It is my assertion that the scaling trick can be

carried out on any machine that I know about. It would be possible to

design a machine so that this trick would not work, because the numbers are

represented in some peculiar way.

Once the scale factor has been chosen, there is nothing to indicate

if the machine is binary or hexadecimal.

8-10

Another property of the program is that we haven't spent much more time

than the minimum to solve a quadratic. The minimum is our program after

the scaling has been done. We haven't more than doubled the minimum amount

of time.

What About Automatic Theorem Proving?

Question: Some people at Stanford try to prove validity of programs

by putting balloons around decisions. In proving the validity of your SQRT

you took an analytic approach. But in this quadratic solver with its tests

and decisions, you were reduced to looking at cases. Balloons wouldn't help.

Is there some theory that says when you've exhausted the cases?

Answer: The approches used by the people at Stanford to prove validity

make techniques which reduce in the end to an examination of cases seem

abstract and impressive. There is no systematic way I know of to minimize

8-11

the number of cases. In general, it is better to break the cases up in any

way that makes sense to yout even if the number is then larger than necessary

and tackle them. You'll find that arguments used in one case will work for

another; maybe those two cases should have been one, but separating them

won't have cost you very much.

The difficulty in their approach arises when you try to prove anything

about a machine like ours which is capricious. If the program was reasonably

simple and the number of rules was reasonably small, their fonnalization

would appear to be quite successful. What I have done on the quadratic is

essentially what they would do, stripped of abstractions. It is possible

to write down comments that enable you, at any point, to tell what the state

of the machine is, subject to certain parameters. The parameters depend on

the data. Every time you pass through a decision you can give the new

parameters in terms of the old. You could verify that certain relations

remain satisfied by those parameters. But there is no systematic way to

generate those relations, which depend on your objective. The men at

Stanford have yet to prove the validity of any program half as complicated

as the quadratic solver.

Question: Their problems are typically logical ones, like sorts.

They don't come into contact with the machine.

Answer: They use induction. They do not have inequalities, for

which in critical cases you have to examine a finite number of integer

variables and let them run through their values. That is not because their

method is incapable of doing so. It can if you tell it to but that is where

the work is and it is not part of their scheme.

Working out what to do with a proof involves cleverness in deciding

8-12

which statements to test for validity, not in doing the actual technical

manipu]ations which go into proving the validity of statements you've decided

to test. The best I would expect from mechanical program verifiers would be

that if you could reduce the verification of a program to a set of verifi

cations of fonnal statements, which only required a certain amount of

exhaustion of cases generated in a routine way which you'd rather not do

yourself, then you'd let the machine do it.

The example of the 29 incorrect [19] square roots was a time when I

had the machine do some verification. But deciding what routine to use

required ingenuity. I don't think you can escape that for non-trivial

programs. I think all you'd usually get from theorem proving was really

just proof checking. But proof checking could be tedious and you may have

trouble explaining to the machine that certain things are true (like

properties of continuous functions).

8-13

The point is not that the machine cannot know everything. Rather, it

is that in my attempt to explain to the machine what I know, I may be building

in a misconception without realizing it.

Example. Find the maximum value of a continuous function on a closed

interval. Everybody knows that the function achieves its maximum. But

there is no algorithm which when given the program that generates the function

and the endpoints of the interval can guarantee the maximum to an arbitrary

preassigned precision. If such a program existed, it could solve mathematical

problems like Fennat's last theo~, or the Riemann hypothesis. So what do

we mean when we write down MAX(f(x),a,b)? We aren't sure we should write

that down perfectly freely. But we do it anyway. There could be a mistake

in our concept of a maximun which we may infuse into a proof, which was

intended to be constructive. By introducing this non-constructive idea we

may have clobbered the proof without realizing it.

The proof checker has then checked the validity of a certain argument

following from certain assumptions without really proving the theorem. I'm

afraid people will assume that anything checked by a proof checker is true.

It is only true if the assumptions were, but they could be true in a non

constructive sense and not true in a constructive sense.

9. HOW CAN WE ADD UP A LONG STRING OF NUMBERS? - STANDARD ALGORITHM

Today we shall demonstrate the difficulties that arise from poor design

of floating point hardware when we try to add up a sequence of nunt>ers. This

simple problem has been chosen because the analysis is relatively simple.

We shall see that the analysis becomes more difficult as we weaken our

demands on the arithmetic unit.
n

The usual program for evaluating Ix. would be
1 J

S = 0

DO 1 J=ltN
l S = S+X(J)

The final result of thi~ program is

We could also write

n
sn = I x.(l+F.,;.) t l+~. = (l+cr.){l+cr.+1)···(l+o) t o1 = 0

j=l J J J J J n

If we assume !cr. ! < E: then we find that
J -

l~-1 = l(l+t;.)-11 < (l+c)n+l-j _ 1 ~ (n+l-j)e:+O((nE:)2)
J J -

Thus our computed value is actually the sum of slightly altered numbers.

The alteration is at most a few units in the last place times the number of

su1Tmands. This does not seem intolerable, at least for small values of n.

Let us see what happens when we try to solve an ordinary differential

equation by summing this way. A typical problem would be

dy = f(t,y)dt

9-l

which we would try to solve by an algorithm such as

y(t) = given
0

y(tn+l) = y(tn) + F(tn,y(tn))(tn+l-tn)

If we take small steps, we will sum many small increments. Most of the

increments might be much smaller than y(t), the given initial value.
0

We could have the situation

y(t) = xxxxxx.
0

~y(t) = xx.xxxx
0

The digits to the right of the decimal point are lost in rounding. One way

of looking at this digit loss is as a perturbation of y(t). That is, the
0

rounded result y(t 1) is the correct result of addition of 6y(t
0

) to a

9-2

slightly smaller y(t
0

). This perturbation is in the seventh place of y(t 0)

and thus is fairly negligible, since it is, after all, less than the

uncertainty in y(t
0

) caused by rounding to six figures. Unfortunately,

if there are a million steps in the computation, transferring each rounding

error to the initial value might well change it beyond recognition. Then

we would have the right answer -- to a completely wrong problem.

There is a more fruitful way of looking at the computation. That is

to imagine that instead of computing F, an average of f, at each step

we are actually computing another function that yields XX.O instead of

XX.XXXX so that the addition is always performed correctly. So we get

the correct result for a problem with a somewhat different function which

agrees with f only to about two figures.

-

Use Double Precision

In general we would like to solve a problem closer to the given one.

There are several tricks which we can employ to do this. Suppose, for

instance, that we only do a double precision add at each step:

y(t
0

) = XXXXXX.000000 •

xx.xxxxoo

If double precision hardware is available the extra cost of this is small.

We can see that as long as ey(t
0

) affects the last (single-precision)

place of y(t
0

), then none of ey(t
0

) will be lost in the addition and the

sum will remain accurate. Generally, as long as ~Y is large enough to

alter the last single precision place of y, any error introduced by summa

tion will be small and the sum will be nearly accurate in single precision.

We could trace this small error introduced by summation back to being a

single-precision perturbation in the integrated functions. (The worst that

could happen would be that the steps would be so small that AY would not

affect the left half of y, but this could not happen often or else the

numerical process would be regarded as impractically slow.)

The value of this technique is that the bound on l~-1 is changed from
J

proportional to E to proportional to £
2. Then we can sum as many as ~ !

terms before worrying about rounding error showing up in our single precision

result. As a concrete example, consider a million steps on the 360. Short

word arithmetic has six hexadecimal digits, so the perturbation on the input

data could be as large as 1. Long word arithmetic carries fourteen hexa

decimal digits, so about 1010 tenns could be added before the perturbations

become serious.

Therefore all we need do is add the statement DOUBLES to our previous

9-3

program. To avoid having the double precision propagate into other parts of

the program where it is not necessary, truncate S to another single

precision variable and use that variable elsewhere.

Suppose There's No Higher Precision

Suppose, however, that double precision is not available, or that we

were in double precision to begin with! Fortunately. we can, in effect,

simulate those parts of double precision that interest us by prograf'IIJling

one of a number of well known tricks. One of these is as follows:

S = 0

C = 0

DO 1 J=l,N
Y = C+X(J)

T = S+Y

C = (S-T)+Y
1 S = T

SUM= S+C (rounded)

C represents the rounding error computed in the previous step. Y is

a slightly perturbed sulTVlland which is added to the sum S via the tempo

rary sum T. In pictures:

s I
+ I y

T I ~rrorl

1 s
- I _ _;_,T _ ___.

S-T l, _ _..;..XX_.;.X;..;._XX---"Xi
+YI - ___ y __ __

C I Error I

9-4

-

-

We don't expect any error in S-T if Q!!!:. machine has!. guard digit.

The characteristics of S and T are either equal or differ by one, so we

expect their difference to be computed correctly. The difference will be

about the size of Y and will have a number of leading zeros, causing a

left shift. so that we are sure that the difference will be accurate.

We need to apply our model to get a credible proof of the effectiveness

of this program. We see that the values in storage are

s = 0
0

C = 0
0

y. = (c. 1+x.)(l+n.)
J J- J J

s. = t. = (s . l +y.)(1 +T.)
J J J- J J

cj = ((s.
1
-s.)(l+cr.)+y.)(l+y.)

J- J J J J

For each Greek letter, !Greek/ < £. By induction the result is

n
S + C = I(l +~ .) X .
n n 1 J J

1 + ~ . = (1 +n .)(l -cr .) + O ((n+ 1 -j) i)
J J J •

That is, we've perturbed the input by a few ulps in single precision

independent of n and a number of ulps in double precision proportional to

n. This routine gives an answer about as good as we deserve without invoking

the doub1e precision package. There are cases when the algorithm will not

work on machines that chop before rounding. On our CDC machine, if s and

t differ slightly, with different characteristics, their difference might

be zero. Then crj = -1 which ruins everything. Now we wouldn't expect

such s and t to occur very often -- they would be numbers just slightly

on different sides of a power of two. But such a claim is hard to prove.

9-5

In 1968 van Reeken "discovered" that the algorithm worked correctly on

every machine and input he could think of, for the purpose of computing

running averages:

v -M l n n-
n

9-6

The purpose of computing the running mean by means of the recurrence was

actually to use it in computing a running standard deviation by means of a

similar recurrence. Such a recurrence requires a square root of a sum that

might become negative due to rounding errors if the vn's are all nearly the

same. Therefore we would want to compute that sum using the single-precision

algorithm described above.

Kahan has since discovered a counter-example that shows that the

algorithm will fail on the running average problem on machines with no guard

digit. The average is over three million values satisfying

l 3
-2<v.<-2 - J -

The last six digits in the single precision average are wrong, because s-t

is computed incorrectly about } of the time, on the 6400. s and t are

nearly always just on opposite sides of 1. Clearly the erroneous result

depends rather strongly on the careful choice of the input. Nevertheless,

it is hard to understand~ priori why a computer should average reasonable

numbers so poorly. But this is just a specific case of the general principle

that it is very hard to understand computers that do not follow simple rules.

After all, the trick in the algorithm is so easy to discover that at least

half a dozen persons have done so independently. It is much more difficult,

however, to determine on which machines it will work ... or fail.

If this trick were needed only to solve differential equations. it

9-7

would not be worth crying over its loss. You then would write a double

precision subroutine, in assembly language if necessary and call that to add

your numbers in double precision.

Why You Want Exact Differencestt

But this reaches into many other areas. It affects our ability to code

higher precision arithmetic out of single precision by subroutines that are

partially machine independent. This may not appear important to you, but

when people produce numerical algorithms they would like them to work on any

reasonable computer. In the middle.they will do calculations to essentially

higher precision by some trick. The writer could insist that your compiler

provide double precision. But Algol usually doesn't (except on the B5500).

But there is a nontheorem that tells you there is no theorem to tell

you that if you want to solve this problem to single precision you must carry

n-tuple precision. There cannot be such a theorem to specify n, since

n-tuple precision can be simulated by single precision.t

People who talk about coding multiple precision with single generally

miss a couple of points. One is that they insist upon being able to compute

Y+Z exactly, for all combinations of Y and Z as the sum of two other

floating point numbers, say Y+ Z = Sl +S2, where S1 and S2 almost

constitute a double precision number, with Sl the leading and S2 the

trailing parts. But then the difference between Y + Z as computed and
precision.

Y + Z as it ought to be might not be a machine representable number in single /

It also assumes that Sl and S2 must have the same sign, and that isn't

tA report by T.J. Dekker shows how to do this on "clean" machines, that is,
on machines on which the preceding trick will work. There is a book in
manuscript by Patrick Sterbenz in which he also shows how to code double
precision arithmetic from single, provided the machine is reasonable, like
360 equipment. Knuth, Section 4.2, also talks about this and even has the
trick enshrined as a theorem.

ttExact differences are important for sums with good error bounds.

9-8

true. t

The issue is not what can you do exactly, even though if you have a solu

tion for that you can do everything else.

The issue is that if you have a 11dirty" type of single precision arith

metic, can you make up a double precision arithmetic that is also dirty, but

not unreasonably so. The answer is yes, but it is harder.

If you can get a difference exactly (if it is representable exactly),

then for all the kinds of arithmetic we've been studying you have the equip

ment to do double precision arithmetic, coded in FORTRAN or ALGOL, using

only the ordinary floating point arithmetic. Then you can pyramid. And the

code is transportable to another machine. You need only verify the most rudi

mentary aspects of the machine, like its number base, number of digits carried

in single precision. If you work at it long enough you can get operations

to be perfonned exactly.

Question: In trying to simulate the double precision, wouldn't it be

better to unpack the numbers and work on them as integers?

Answer: Yes, but I am trying to write a FORTRAN (or ALGOL) program

that will compute a difference exactly.

Question: What's the good of a FORTRAN program, if you have to rethink

and reprove that the program will work when you go to a different machine?

Answer: If this program is done correctly, it will work for any machine

whose arithmetic is somewhat messy. Then you pyramid this operation, using

single precision to get double, then double to get quadruple, and so on,

until the messiness catches up with you, somewhere around 128-length precision.

Question: With that length, isn't it still better to work with your own

number representation?

tThis red herring is raised by Knuth, Dekker and Sterbenz.

Answer: More efficient, yes. But the idea was to show that you could

write in an essentially machine independent language.

Question: But why not use integer arithmetic in FORTRAN, if you're

going up to 100-length words?

Answer: Then you have to take into account machines like the 7094,

9-9

where integers are limited to 15 bits (FORTRAN II} and overflow is not

detectable in an intelligent way. Could you code things there? In FORTRAN IV,

you have the 36 bits, but overflow is even less detectable. You would

have to clear the overflow bits before and test after each operation. In

fact, you could not only do arbitrary precision but be infini}ely precise~

it's rational arithmetic.

Question: Your code is transportable only with some assumptions about

the machine. And you haven't stated what those assumptions are.

Answer: The assumption would be that whenever they do an arithmetic

operation the result is no worse than what you would have gotten had you

changed both the operands by a unit in the last place.

Question: You've drawn pictures of how the numbers appear in the

machine. What if they don't appear that way, but involve lots of funny shifts?

Answer: The algorithms would work, but the proof gets harder.

Question: It seems you're assuming more than that the result you get is

no worse than making a s1ight modification in the operands because you keep

making statements that'this calculation can be done exactly~ but that wouldn1t

follow from your original assumption.

Answer: No, the original assumption is that if two operands have suffi

ciently few digits, the operation is done exactly (the digits line up).

There are some numbers for which you get what you should, in the absence of

rounding errors. Another assumption is the one about modification of the

9-10

operands. The tricks are designed to work toward the numbers with few digits,

where you can do something exactly and then work your way back to the original

problem.

Question: In the time you spent working out this trick in FORTRAN,

it could have been done in machine language for five different machines.

Answer: You could, but the trick, in FORTRAN, can be imbedded in code -
and carry the code wherever you want to any machine as long as it isn't too

weird.

Question: Are the properties you require (for the trick) going to be

easily determinable for any machine?

Answer: Yes, they will be for single precision and once they are deter

mined, the scheme will work for double precision, etc.

Question: If what you say is true, about being able to devise a trick

for even dirty machines, then why should Knuth, Dekker and Sterbenz continue

to lay out red herrings?

Answer: They started out from a paper by M~ller that appeared in BIT

(about the same time as my note in the CACM), which stated in a theorem that

floating point numbers are related in a certain way, provided the arithmetic

is such and such, and he set a pattern for the others. Knuth is not a numerical

analyst and doesn't care about these things and he just pursued that rather

interesting mathematical pattern. Dekker works mostly with 11clean" machines,

so he worked out his scheme for them. Sterbenz worked with the group in

SHARE that got IBM to change its hardware.

Question: By the time you find someone who knows enough about the

machine to answer your questions, you could have coded in machine language.

Answer: That I dispute. Consider the 85500. We know what the charac

teristics are: 13 octal characters with such and such arithmetic. We know

-

that now, but not the order code. It would be easier now to code the FORTRAN

rathe.r than 1 earn the order code. Or say, in a hurry, I want you to produce

roughly quadruple precision add. You'd find it faster probably to take the

double precision add and trick it, even on a machine whose assembly language

you are utterly familiar with.

If worse comes to worst, to clear out some digits (so you can do exact

arithmetic), do the following:

no••·•--•OI
+ -~x-xrr-v-v-v1

n O· • u OXXXj

- n O· •OI subtract the l

~ ~XX~YYY[

- ~XXPOOOI

1oooo~vvv1 ~
now the number is
broken into approxi
mately equal parts

If you can do this, the rest is easy.

Proof for the Pseudo-Double Precision Accumulation

We write the algorithm here with Greek letters for each error committed.

I Greek I 2- e:.

s = o. s = 0
0

C = 0. C
0

= 0

DO 9 I=l,N for j = l,n
Y=C+X(I) Yj = (x . +c . 1) (1 +n .)

J J- J
T=S+Y sj = (s . l +y .)(l +-r .)

J- J J
C={S-T)+Y c. = ((s . 1-s .) (l +cr.)+y.) (1 +y.}

J J- J J J J
9 S=T

SUM=S+T

9-11

We will see that this program works on machines that nonnalize and then

round. The equations with Greek letters in them are all based on the

assumption that the sum of a and b is computed as (a+b)(l+y).

We intend to demonstrate the following facts by induction:

n
c = Ir ·X· n . 1 n,1 1

1=
(n > i)

Exercise. Determine the coefficient of c2 and show that it i,s O(n).

Note that these insertions imply that the rounding error we attach to

x1 is of order c and is independent of n to single precision. The first

three steps of the computation provide the basis for the induction.

yl = X 1 n, = 0

S = X l Tl = 0

c, = 0 crl = 0 Y1 = 0

Y2 = x2 n2 = 0

s2 = (l+T 2)x 1 + (l+T
2

)x
2

c2 ~ (-T 2)x1 + (-T 2-cr2)x2

n1, l = 1

rl,1 = 0 = -Tl

x1, 1 = l = (l+n1)(1-cr1)

02, l = 1 +T2 n2,2 = 1 + -r2

r2,l ~ -T2 r2,2 ~ -T2 - 0'2

X2, 1 = 1 = (l+n 1)(1-cr1)

x2, 2 ~ l - cr2 = (l+n 2)(1-cr2)

Y3 ~ (l+n 3)(-T 2)x1 + (l+n 3)(--r 2-cr2)x
2

+ (1+n
3

)x
3

S3 'i (l+T3)x, + (l+T3){l-a2)X2 + (l+-r3)(l+n3)X3

n3 , 2 ~ (l+T
3

)(1-o
2

)

9-12

n3,3 ~ (l+T3)(l+n3)

c3 ~ (-1:3)Xl + (-1:3)X2 + (-1:3-o3)X3

r3,1 ~ --r3

~ l X3, l

rJ,2 '¾ -T3

X3,2 ~ 1 - 02

f3,3 ~ -T3-03

X3,3 ~ 1 + n3 - 03

Here we have wrf tten n . = x . - r . so that n,, n,1 n,,

dropped all tenns of order E
2 or E

3, so that

~ (l+n 3)(l-o 3)

n
s = In .x., and we

n i= 1 n,, 1

"+0(E2) 11 should be

appended to each approximate equality to make it exact. These steps provide

9-13

a basis for the induction and indicate how the induction hypothesis was chosen.

Now let us drop subscripts of n and write -1 for n-1 in what is to

follow. Then we find

n-1
y = x(l+n) + (l+n) Ir 1 •X· ,

i=l - ' 1 1

n n-1 n-1
s = I n . x . = (1 +-r){ I n 1 . x . + x (1 +n) + { l +n) I r 1 . x . } . 1 n,, 1 .

1
- , , 1 .

1
- ,, 1 ,= ,= ,= '

Assl.lTling with the induction hypothesis that r and x are independent of

x, we find fonnally that

for ; < n, nn,i = (1+i:)n_1,i + (1+-r)(l+n)r_ 1,i

Also

n = (l+n)(l+-r) n,n

n-1
= (l+y){x(l+n} + (l+n) I r 1 -x-}

i=l - ' 1 1

n-1
+ (1 +y)(l +o){ i ~ l (Q _ l , ; - (l +T) {n _ l , i + (l +n) r _ l , ; })xi

- - (l+n)(l+-r)x}

Then for i < n

r . = (l+y)(l+cr)(-T)s-2 1 . + (l+y)(-cr-T-crT)f 1 .
n,1 - ,1 - ,1

and

r = (l+y)(l+n)(-o-T-crT) = -crn- Tn+ o(i) n,n

Note that

x = r + n n,n n,n n,n
= (l+y)(l+n)(-cr-T-crT) + (l+n)(l+T}

= (l+n)(1-cr +0(£2)) n n
= (l+n.)(l-cr.+0(£ 2))

1 1

Therefore the "induction" hypothesis is verified directly for Xn,n and

rn,n without any induction.

For the case where i < n we have deduced the relation

(l +y) (l +cr) (-T)

We are interested in x rather than n so we note that

[
xi l = [1 1 l [ni l , [n _ 1

, ; l = [l - l l [x_ 1

, ; l
r. o 1 r. r

1

. o 1 r
1

.

1 1 - ,1 - ,1

When we perform the indicated matrix multiplications we find that

We are now ready to apply the induction hypothesis for

to see if it holds for n. First there is the case i < n-1.

Then

1,2, ... ,n-1

9-14

-
(

1 +0(e:2) 2 H 2

l [:n·~ l I n-o+O(e:) (l+n.)(1-o.+O(e:))
1 1 = I 2 2 2 -T+O(e:) -o+O(e:) I I

-1_ 1 + O{e:) i. n, 1 ' I I
\ J \

((l+n.)(1-o.+O(e:2)) l = l
1 1

-Tn+O(e:2)

The final possibility, that i = n-1 so rn-l ,n-l = -Tn_1- crn-l +O{e:2),

leads to the same result. Note that a variety of induction hypotheses would

satisfy the induction step and the computation of the first few values in

the basis is essential to find the correct hypothesis.

We must step back from the blizzard of subscripts and understand that

the important step was realizing, from the picture, that a useful induction

hypothesis could be fonnulated. Note that our picture is based on the stan

dard way of doing floating point addition, yet the proof derived from the

picture is completely valid for any machine, such as a properly designed

logarithmic machine, in which the arithmetic is done by rounding the correct

result.

This type of algorithm has been developed independently by

Babuska, "Numerical Stability in Mathematical Analysis," Proceedings

of IFIP Congress 1968, Vol. l.

M~ller, "Quasi-Double Precision in Floating Point Addition," BIT.§_,

37-50 and 251-255.

(M~ller's algorithm was designed for bad machines and is not optimal

for good ones!)

Knuth, Seminumerical Algorittlns, pp. 201-204, 1969.

9-15

10. ADDING UP A LONG STRING OF NUMBERS --
A MYSTERIOUS ALGORITHM WITH A MAGIC CONSTANT

The previous algorithm will not work on a CDC 6000 machine. However,

we can make a somewhat similar algorithm work, even in the face of apparent

theoretical difficulties.

Theoretical Difficulties(?)

The difference in machines is in the model of arithmetic that may be

applied to them. The good ones compute A+B as (a+b)(l+y), while the

others yield (a(l+a) + b(l+S)). Perhaps, though, a more clever algorithm

could be devised that would yield a result in single precision almost as

good as if double precision had been used, even on machines that compute

according to the second model. The Russian Viten 1 ko (U.S.S.R. Computational

Math. and Math. Physics 8 (5) pp. 183-195) has shown that for any algoritllll
n

for a sum ~ xj{1+,j), on a machine where the second model must be applied,

the bound ~ ~ € log2n is the best possible. Basically, addition on a

binary tree structure is best possible. For example,

Clearly each x will have 3 = log28 rounding errors attached to it. Any

algorithm for computing the sum of eight numbers will have at least three

Greek letters attached to at least one of the operands.

DIFl - The Algorithm That Defies Viten 1ko's Theorem

Vi ten 1·ko Is theorem is true, yet mis 1 eadi ng. Even on machines such as

the CDC we can sum many numbers without explicit double precision, with a

backward error ~ of a few units independent on n in single precision,

10-1

l 0-2

and O(n2) units in double precision. For instance, the following mysterious

algorithm DIFl will work:

S = 0.0

C = 0.0

DO l J=l,N
Y = C+X(J)
T = S+Y
F = 0.0

IF(SIGN(l.0,Y).EQ.SIGN(l.O,S)) F = (0.46*T-T)+T
C = ((S-F)-(T-F))+Y

1 S = T

This code is machine independent on all North Jllnerican machines with floating

hardware. However, the proof that it will work is very difficult. Yet

nothing about it contradicts Viten1 ko1s work. The model (a(l+a)+b(l+S))

for addition is not categorical and even bad machines often behave better

than this model indicates. The mysterious algorithm is based on a careful

exploitation of some of these loopholes where the model is overly pessimistic.

Proof of DIFl, the Magic Constant Algorithm

If we compare the proof to follow with that in section [9], we see that

an entirely new line of reasoning is necessary. First we must see how the

special fiddling works. In the previous program we wrote

C = (S-T) + Y

in order to get

C = ((s-t)(l+cr)+y)(l+y}

This just won't work on machines such as the CDC. Nonetheless, there is a

kind of arithmetic that can always be done precisely. By exploiting this

--

kind of arithmetic, we can compute a c satisfying such an equation, with

cr and y perhaps somewhat larger. Suppose we want to determine the error

in A-B as follows:

Al --;::-===---..... - B
A > B > 0

C ! ____ I ~rror!

A ._I -- .--_-_-_ __ _,
- C

z

The important thing to notice is that Z = A- C is computed precisely. C

10-3

was fonned as a ntlllber with the characteristic of A and then was nonnalized.

When it is subtracted from A the part shifted out and lost is just the

previous nonnalization's zeroes.

Consequently we can conclude that z ~ b and that their difference

could be computed precisely, except in the case that their characteristics

differ by one. The fact that B - Z may not be computed precisely would be

considered disastrous by M~ller and Knuth. We will find that a small pertur

bation in B is no worse than a small perturbation in the numbers we are

trying to sum.

by

We will replace the statement

C = (S-T)+Y

F = 0.0

IF{SIGN(Y).EQ.SIGN(S)} F = (0.46•T-T)+T
C = ({S-F}-{T-F))+Y

10-4

We will need a picture to understand this:

Case 1 Case 2

char(T) =char(. 54T) = char(.46T)+ l char(T) = char(. 54T)+ l = char(. 46T)+ 1 or 2

Step 1 T

I .46T v½i
~ .54T

Step 2 l T

- I ~ .54T

0 I ~ .46T !
F I ~ .46T O!

T

1 .46T v2½2
O I ~ . 54T I
I ~ . 54T 01

T I
I ~ . 54T Pl

0 ! ~ .46T!
F I~ .46T 01

F has been fabricated in such a way that it can be subtracted precisely

from T. The proof of this statement depends on the machine. First, consider

a machine like the 650 which does arithmetic by dropping right-shifted bits.

Such arithmetic is illustrated in the picture. F is formed from a number

with the characteristic of T, by left-nonnalizing and inserting zeros at

the right. Then when T-F is computed, F is right shifted so that those

same zeros chop off, with no loss of accuracy, so that T-F is exact.

A similar argument applies if a whole guard word is used and then

discarded as on the CDC 6400. The contents of the guard words are zero

when T-F is computed.

Suppose there is a guard digit as on the IBM 360 series. Then we must

distinguish two cases, according to char(.54T).

10-5

Guard digit

Case 1 Case 2

Step 2 I f I T I
- I :¼ .54T I FIi - 0 I ~ .54T I~

0 I ~ . 46T I IQ! o I ~ .46TI ~
F I :¼ .46T 01 ! ~ .46T GI (or I ~ .46T G 0I)

Step 3 T !
I~ .46T I~
~ .54T I~

T I
f: .46TI ~ (0)

0 I~ . 54T ! [l
[~ .54T GI

In the first case, char(. 54T) = char(T) = char(.46T) + 1. Then the guard

digit is always a zero and the answer T-F is precise. In the second case,

the guard digit may not be zero. But F is always left shifted at least

once after step 2, so the guard digit is saved. Then when T-F is computed

the guard digit is shifted back to the proper position. Therefore it may be

non-zero. But char(T-F) < char(T) so T-F is right shifted at least once,

so the guard digit is saved and no error is made.

Suppose finally that a whole guard word is kept in th~ subtraction and

used in the subsequent nonnalization as is done by the IBM 7094. Case 1 is

precisely as in the case where digits are discarded. The guard words are

entirely zero. Case 2 is precisely as in the case of the guard digit. The

only extra digit that might be saved in the guard word is always a zero, so

it makes no difference.

We are satisfied that T-F has no error. Now we must examine S-F

to detennine what happens when we compute

T = S+ Y
.

C ~ ((S-F)-(T-F))+Y

Suppose first that [YI 1 is substantial, say at least 21TI. Then

({S-F)-(T-F)) is essentially (S-T) to a few ulps, and is approximately

-Y, to within a few ulps of Y, so that C is computed to be a few ulps

10-6

of Y. Then we can safely say c = ((s-t)(l+o)+y), with a small o, perhaps

2£. Then we can map the error back to a small perturbation in X, as before,

unless X is so small we don't care about it.

Suppose next that !YI is so small that S ~ T, and sign(S); sign(Y).

Then [SI> !Tl, F = O, and T was fonned by a magnitude subtract from S.

S-T is always correct, so that cr = O. Then (s-t) +y will also be done

correctly, except for possibly an ulp due to different characteristics. We

illustrate with the case of a guard digit:

T = S+Y s I
l v I~~

Normalize T GI Error=~

S-T s I
T 1m
IT]~

Normalize 1-Y !GI o I
+Y o:J~lm□

C (error) !ZZID

or l.._1 _T _ __,! ~

.__11 __ T _ __,i Error = lzza + ~

- 11

1-Y
!Y

s
T

y

I o I

.... r+
1/) :::r
Ill VI _,
~o
~-g
1/) "1

Ill
(t) r+
X --'·
Ill 0
(") ::i
rt

!GI, ;;.,i Cl+ one di git .._.
possible due to
characteristics •
differing by one:

10-7

All arithmetic units will work properly in this case to give C almost

exactly equa 1 to (s-t) + y.

Suppose, however, that IYI is small so that S ~ T, and the signs of

S and Y agree. Then ISi < /Tl, In fact, !Tl > js] >IT-Fl> !S-FI > IFI.
Remember that T-F is always precise. What about S-F? The only way

accuracy is lost is if F is right shifted so far with respect to S that

non-zero digits in F extend to the right of S-F so that they can't be

included in the result. But S is between T and F. Consequently F

will be right shifted with respect to S no farther than with respect to T,

and perhaps less. Since T-F is precise, S-F must also be precise.

We only need to know if (S-F) - (T-F) is precise. This will certainly

be the case if char(S-F) = char(T-F). Therefore we only need to locate and

investigate the cases where char(S-F) < char(T-F).

First we need to establish what the possible alignments relative to T

might be, for each operand. S ~ T so it might have relative alignment 0

or l in the addition unit:

T T

s ._ __ s ____ l + one di gi t

relative alignment 0 relative alignment 1

Now F ~ .46T, so it could have alignment O or 1 with respect to T,

or even 2. The case of relative alignment 2 occurs only on binary machines,

and requires that a characteristic jump occur between .46T and .SOT, and

again between .92T and l.OT. Since S-F and T-F are about .54T, they

must have the same characteristic and hence the same alignment relative to T,

which could be O or 1.

With these facts and monotonicity,

10-8

char(T).?: char(S).?: char(T-F).?: char(S-F).?: char(F)

we can construct a tab le of all the possible alignments of operands:

(0 or 1) (0 or 1) (0 or 1) (O,l,or2)

Case Align s Align T-F Align S-F Align F

1 0 0 0 0 ✓

2 0 0 0 1 ✓

3 0 0 0 2 ✓

4 0 0 1 1 ?

5 0 0 1 2 Excluded

6 0 l 1 l ✓

7 0 1 l 2 ✓

8 1 l 1 l ✓

9 1 1 1 2 ✓

Case 5 is excluded because it is impossible by the preceding paragraph's

argument. In all the other cases except 4 the alignments of T-F and S-F

agree, so that (S-F) - (T-F) can be computed precisely.

Case 4 requires a finer analysis. It corresponds to the picture

T

s
F !XI

T-F I
S-F I XI

On a machine which discards digits (650) or the guard word (6400), we

know the digit X in F will be zero. Otherwise T-F could not be computed

precisely, and we know that it is. Therefore the X in S-F will also be

zero. When S-F is aligned for subtraction from T-F, the X will be

discarded, with no loss of accuracy.
-

10-9

On a machine with a guard word (7090) or digit (360), the same analysis

holds! The digit X is not discarded but is in the guard digit. But because

we know T-F was computed precisely, and it has no room for the guard digit

X, the guard digit must have been O.

Therefore (S-F) -(T-F) is always precisely computed and we can be

sure it is precisely s -t. It will then be added to Y to give an answer

correct to a few ulps of Y.

The important thing to remember about the workings of this mystery

algorithm in this case is that the expression S-T might not always have a

small relative error or be precise, but F has been rigged in such a way

that the expression (S-F) -(T-F) is always precisely S-T.

The mysterious constant 0.46, which could perhaps be any number

between 0.25 and 0.50, and the fact that the proof requires a considera

tion of known machine designs, indicate that this algorithm is not an advance

in computer science. This sort of devious reasoning is not desirable and

should not be necessary. But we can expect to have to do more of the same

until hardware designers understand the true costs of their decisions.

Can Using DIFlt Make the Answer Worse?

Is it possible, by using the function DIFl, to get an answer that is

worse than not having used it at all? This needs to be checked for machines

like 7094 and 85500, which have guard words. We must check that if the

difference is representable exactly, that's what you get. This code will

obviously not work on machines which represent numbers by their logs.

tDIFl is the"magic constant" a1gorithm.

10-10

The essence of working out DIFl for machines on which it is not

needed is that in using this code to make it machine independent the results

* may be worse than before.

Question: How did you happen to write this code?

Answer; It was written when we were switching from a 650 to a 7090

using code that had been previously written for a Ferranti-Manchester Mark I,

when we were wondering how we1 d ever live through all these transitions.

So an attempt was made to write code that was machine independent.

Question: I can't see in my mind the sequence that led to your

having written such code.

Answer: In my mind was a picture of digits, of course, digit strings

as might come from a desk calculator, octal calculator, or a binary machine.

The Ferranti-Manchester had to be coded in teletype code -- there was no

assembly language so everything had to be visualized quite clearly --

digits had to be input as characters like /, @, Y. It was the practice

of visualizing what was going on in the F-M that made it possible for me

to see what was going to happen for the various implementations. The

tricky part is the .46•T -- who would think to do that?

Question: That was the part I was looking at. I more or less con

vinced myself that it would work on the 6400 and probably on the 360, for

entirely different reasons. I don't call that machine independent.

Answer: The trouble is that it is machine independent in the sense

that it is independent of the machines currently on the market.

*

Question: By a proof that is different for each one?

Answer: Right, and that is very unsatisfactory.

In looking at this code, you will learn a new way to look at numbers,
namely as strings of digits.

-

Question: I don't see any underlying principles.

Answer: The underlying principles are that the digits get pushed

off the right hand side of the register but it is not exactly certain

what they do as they go.

Unfortunately, the proof for DIFl is different for each machine.

10-11

What is annoying is this: The conmercial, economic value of machine

independent code is so great that people have tried for a long time to find

it. And they will continue to try. The time spent on floating point

calculations is very small, in most cases. However, that code is normally

written by people who, if they write it successfully are a little more

educated than many of the other prograirmers. Therefore, when an error

occurs in that code you have a great deal of trouble debugging it unless

you find just such a person as wrote it. But such people don't stay

around. So the expense of obtaining code like this and transferring it

from one machine to another is horrendous.

Question: Isn't it true on that precise argument, that code like

this, that looks like FORTRAN, is actually going to be more expensive

to transfer to a new machine than code that is explicitly machine code

where somebody knows he'll have to go in and rewrite the code?

Answer: What you are saying is, shall we write the code in assembly

language with careful documentation to explain exactly what we are doing

hoping then, that when we switch to another machine, anyone who reads

and understands the documentation will be able to translate into the new

assembly language, or should we try to write in machine independent code

with some sort of theorem, even an ugly one, that tells us it'll work on

almost any machine you can think of. It seems to you that the first

rationale is more sensible. I used to think so to. But I have some code

I wrote in 1965 that I can no longer understand, even though it is richly

co1J111ented. It was written in assembly language and uses every bit of

the machine to squeeze every ounce of perfonnance out of its code. Now,

even though it was perfectly reasonable and transparent at the time, it

would take me several days to once again understand it. That's very

expensive.

Question: That is still less expensive than taking this program to

a new machine, say that is just being built, and finding out in 6 months

that it doesn't work.

Answer: Yes, so I guess my contention would be that machines

ought to be better designed. That there ought to be some uniformity in

10-12

the arithmetic units so arguments of the kind we're having are unnecessary.

Question: Why are manufacturers so unresponsive to your pleas?

Answer: Manufacturers are individuals who are sometimes on the ascendancy

politically, and sometimes not. The sales organization is generally

on the ascendancy, when the company is on the make. The salesmen have

their own particular way of finding out what their customers want. But

customers only know part of what they want. So salesmen make rather

shallow estimates of what is wanted and present misbegotten specifications

to the engineers, who are happy to implement anything. CDC salesmen

collected the specs for the 6000 and 7600. One salesman tried to tell me

his customers didn't want the machine to round, because he hadn't heard

the appendage 11the way they were doing it. 11 And you know why. So the

salesmen said, they don't have to use the round instruction.

-

DIFl should also work in double precision, though there it is harder

to see what's going on. Double precision code on the CDC is not a fixed

thing but varies from compiler to compiler.

Question: Not only does it vary from compiler to compiler, but one of

my friends on the system staff tells me it is incorrect. The guy who wrote

the algorithm for the compiler changed certain things in the way it did its

double precision multiples, for instance, so that it would go faster.

10-13

Answer: That's another reason, for example, for wanting to use a pyramid,

since you don't know what kind of double precision has been provided. The

pyramid has the property that you know what happens in double precision

because it is what happens in single precision.

Why Are Exact Differences Important?

I don't think being able to code double precision is a very desirable

thing in itself, though people have worried about it.t

The problem will arise when somebody has used a trick of this sort

unknowingly. He has used this trick with a picture in his mind of how

machines work. He thinks he has a machine independent code, and he needn't

know the details of each machine that he runs his code on.

That's only one problem. That problem collides with another problem

really a different approach to the same ultimate desideratums: Is

numerical analysis a science? Or is it just an art.? It was taught to me

as an art. My professors did not think of it as mathematics. To think of

tDekker and Sterbenz show that if the sing1e precision arithmetic satisfied
certain rules -- the essential rule is that if you compute a difference
you get it to within a unit in the last place, or thereabouts, and pre
cisely if it can be represented precisely -- then you could get double
precision. The double precision they get doesn't satisfy that rule, but
with a little extra work you can clean it up. Then the double precision
would look like what you would have on a certain kind of machine, in which
its single precision was what you had just coded to be double precision.
Then you could pyramid this.

. 10-14

it that way is really a step backwards, since all the old classical mathe

maticians, Euler, the Bernoulli brothers, Lagrange, LaGuerre, thought of

mathematics and numerical analysis as practically synonymous. They didn't

distinguish the two. But subsequent mathematicians did. Mathematics was

regarded as a simplification of real life and numerical analysis was a

compromise.

Numerical Analysis vs. Mathematics

If we cannot prove anything about numerical analysis, then we run the

risk of never being able to prove anything worth knowing about computers.

You must distinguish between numerical analysis, and mathematics, in which

there are infinite processes and in which things are alleged to converge.

Until you start to discuss rounding errors as they really are, and under/

overflow as they really are, you don't have numerical analysis. van Wijngaarden

thinks this way too; in 1966 he published a paper "Numerical Analysis as an

Independent Science," BIT_§_, 66-81. Knuth has condensed van Wijngaarden's

many pages into about a page.t Knuth's approach is to say let's discuss what

tvan Wijngaarden has numerous rules for entities which would be represented
in the machine and would be intended to represent real numbers. These are
to supplant the rules we learned about real numbers. But since most peo-
ple don't understand this much smaller set of rules, what are the chances
of re-educating people with van Wijngaarden's? He tries to skirt around
another problem, that of using one symbol to mean different things. He
would like his rules to hold if you replace each number by a set of numbers
that differ only by a few units in the last place. You should make only
those statements that will remain valid if the operands are perturbed before
the calculation is done. Questions like, are two numbers equal, he thought
you ought not to ask. You ask if they are equal to within a tolerance,
which is tantamount to saying that the equal sign represents an operation;
you perform this operation upon two operands and the result must be inde
pendent of what you would get had you perturbed the operands by at most a
few units in the last place. Two numbers may be equal, to within a tole
rance, or definitely different to within that tolerance, with some border
line areas in between. Knuth discusses these notions. He has a= b, a~ b
(a almost equal to b), and a~ b (a not quite as equal to b as that).
Philosophers and other people would sum this up by saying -- if you do that
you will be unable to say that you mean or to mean what you say. See Knuth,
Seminumerical Algorithms, 199, 1969.

is a reasonable model of what is done in a comouter (or could be) as merely

a small distortion of what would happen in the world of real numbers.

A+ 8 =a+ b which gets rounded

That is a very s1~ple rule. Unfortunately computers don't obey it.

But Knuth does have the beginnings of a science. Knuth has comprooiised a

10-15

bit, as we could go further and describe all operations in terms of integers.

Knuth has done this, by writing programs for MIX, an integer machine. He

says these will be the definitions of the floating point operations.t

So there you see the two problems converging. One is -- can you write

machine independent code. The other is -- can you think of numerical analysis

as a science. If you claim to have machine independent code it means you

have proved something about it which is tantamount to proving a theorem

about an algorithm, and that's the type of thing we want to do in numerical
, . ana,ys1s.

A Third Consideration: How Much Precision?

There is really a third leg on this stool. If you lose any one of the

three, the stool will fall over. The third leg is this: can you prove

theorems about numerical analysis comparable to theorems in computational

complexity, but bearing instead on how much precision you have to carry to

do a certain job. There are theorems about how long it takes to do

t Anything that is not implied fully by the rule above will have to be fer
reted out by looking at the integer manipulation. You have to look at
exactly what is that rounding rule and exactly what is the base of your
machine. Knuth says he doesn't care what the base is -- a byte can hold
64 or 100 possibilities. In my experience that is a disaster. All sorts
of ugly things happen to non-binary machines.

operations -- say multiply two numbers together.t

There's a theory due to Belaga-Pan (also in Knuth) which tells you

that if you have an nth degree polynomial, you can, by rearranging it in

various subtle ways, reduce the nunber of multiplications by a factor near

two. The theory doesn't tell you how many digits you will need to carry,

however. How long does it take to multiply two matrices together? The

conventional way requires n3 (for n xn matrices) multiplications.

Winograd showed that roughly half that many will do. Strassen has shown

10-16

that actually it is n2·xxx where the exponent is log27 instead of log28.

Other theorems say how much storage you need to do something. But there

is a shocking lack of theorems that tell you how accurately you have to do

something. These theorems don't exist because in principle you could code

multiple precision using only single precision arithmetic. And that's the

explanation for wanting to do some of this, just to demonstrate that if

you had to do it by brute force, you could do this coding, and it would be

to some extent machine independent. In the absence of definitive rules on

how machines work, it is hard to say just what that code should be like.

tTo add two numbers of length n in a machine whose components only have a
certain complexity takes on the order of log n. Machines currently do
run close to the optimum, which is nice. A lower bounded for multiplying
is similar, but there are no algorithms that really come close; usually
n log n is more realistic. So there is room to improve multipliers. Or
the lower bound.

11. HOW MUCH PRECISION DO YOU NEED IN GENERAL?

Beyond the problems of hardware and software flaws looms the larger

question of how little precision can be carried and still yield a desired

accuracy in the result. Current thinking is that this question is likely

to be refractory in the foreseeable future.

T.J. Dekker (in Numerische Mathematik]j!_, #3, 1971) demonstrates how

to use single precision floating point hardware to compute double precision

addition, multiplication, division, and square root. His code is weakly

machine dependent in so far as it requires the base and word length. But

11-1

we know that we can write machine independent code to determine these para

meters. His double precision addition is similar to our algorithm. Multi

plication is based on splitting each operand into two parts. He must assume,

however, that the floating point units give correctly rounded results or

something close to them. His algorithm will work on a GE 635 with proper

software but not on most machines in general use, such as the 360.

A more serious problem is that the hardware commonly built for double

precision does not satisfy as good a model of arithmetic as that for single

precision on the same machine. The GE 635 comes close because extra digits

beyond the double word are included in the arithmetic registers. On most

other machines, such as the 85500 or IBM 7094, the hardware is basically

double precision. The good model satisfied by the single precision instructions

is a consequence of the double registers being already present in the arith

metic units {or we could look on the double precision facility as a cheap

bonus for doing the single precision properly). But there is no guard digit

readily available for double precision arithmetic. It would have to be built

in, and it generally is not.

We would like to be able to program quadruple precision on double

11-2

precision machines by the same trick Dekker uses to get double precision on

single precision machines. Unfortunately no machine comes close enough in

double precision to the model "round the precise result" for this to be

possible. The problems caused by this fact are discussed in Kuki and Ascoly,

"Fortran Extended-Precision Library," IBM Systems Journal lQ, 1971, p. 39.

After the design of the 360/85, it was desired to simu1ate the double-long

word arithmetic of the 85 on other 360 models which had only long word

arithmetic registers. Because of the shortcomings of the long word arith

metic, it was extremely difficult to simulate double-long, particularly in

division. It seems, however, that a rational design of double precision

hardware, to give always the correctly rounded result or something very

close to it, could be achieved.

Students' Report: Higher Precision Out of Single Precision

After a number of false starts we concluded we ·could reasonably go about

producing double precision from single precision by the following strategy:

6400 floating point

(start here; it is about
the worst around)

(exact subtraction
routine)

dirty single precision

(much like 6400 floating
point but without cancella
tion problems; has error
of< 1 ulp of the result)

We thought this dirty single precision was a good place to start.

The technique published by Dekker which looked most promising for construct

ing double precision out of single precision led to a double precision that

was off by a few ulps of double precision. Then we'd have to have a

technique to turn dirty double precision into clean almost-double precision.

tDIFF uses logic like that in DIFl [10] to determine the difference
between two single precision numbers with minimal error.

Given this technique, we'd first apply it to the dirty single precision to

get clean single precision, since the Dekker method started with clean

single precision.

Continuing from above:

dirty single precision ~ clean single precision (correctly rounded)

Dekker dirty double precision same technique ➔ clean, almost
methocf' as above double precision

(The best to clean it up (Then you start all
is to throw away a few bits over again.)
and get say a 93 bit result
to get arithmetic with same
characteristics as the
machine.)

Perhaps by another technique we can produce clean, truly double precision,

but we didn't think of it until too late to try it; it would be a nicer

result.

Machine Single Precision+ Dirty Single Precision

This is done using the DIFF subroutine. It is this step that has to

11-3

be machine independent, in that it has to work if the machine rounds, chops,

normalizes or not in its arithmetic. Once you have the dirty single precision,

only the base of the machine and the number of digits carried is important.

To do this, we compare the sign of two numbers to be added. If the

signs were the same, we simply used the machine's arithmetic. If the signs

were opposite, we ordered them by magnitude and used the DIFF routine.

Question: But if you use 6400 arithmetic to compare two magnitudes,

they can come out equal when they are not.

Answer: Yes, we forgot about that.

Question: Can't you just feed the arguments to DIFF and see if you

get a positive or negative answer?

Answer: No, if you reverse the arguments sent to DIFF, you don't get

the right result.

So we still have this problem of the comparison.

Kahan: If you have two numbers that machine arithmetic says are equal

but you suspect are not, you could send them in both orders to DIFF. If

they are equal, both results will be equal. If they are not equal, I think

you'll get zero in one case and the correct result in the other.

11-4

This is the crucial problem. If when you feed two numbers to the arith

metic unit it has the privilege of muddying them by as much as an ulp before

it does anything, then you can't make delicate comparisons. You can't

even talk about a number because the arithmetic unit is talking about a

different one, and it won't tell you which one.

Dirty~ Clean Single Precision

This is accomplished by a trick which works, regretably, only for

binary machines.

We use a procedure that, we think, takes two single precision numbers

into their double precision sum.

I I
more significant

I I you get two halves
least significant

You look at the least significant half and see if it is more than half

a unit in the last place of the more significant half. If it is, you correct

the more significant half. The easiest way seemed to be to have a way to

construct a number that is a unit in the last place of a given nunber.

The scheme goes like this:

X

+ 1 __ x _____
____ x_+_l_ l +a a = 1, 0

X is x shifted n-1 bits left,
where n is the number of bits in
the word. a depends on how the
machine feels about rounding this
operation.

a can't be more than l, since we assl.llle the error is not more than 1 ulp.

Since the nl.lllbers have the same sign, the number cannot come out too low.

Now subtract off X:

X+l+a

- I __ x _ ___,
l+a

using OIFF (in case there was a carry and the
exponents are different)

l+a lines up with the top of the original number x. Because the

machine is binary l+a can only have two possible values, one of which is

bigger than the original number (the 1 digit is the leading position of x,

so we either have 1 in the leading digit (a= 0) or 2 in the leading

digit (a= 1)). On non-binary machines, you would know that that first

digit was a 1, only that it was nonzero in the leading digit of x. For

an arbitrary base machine, you'd get b+a, where 1 .::_ b < base of machine.

Once you've determined a= 1, you want to get rid of it. You can't

just subtract 1, because you don't know where to put it (if you did you'd

have solved the problem). But in binary, it is very easy; you just divide

by two if a= 1.

So we have a unit in the last place of a number.

Question: What if the division algorithm of the machine is wrong?

Answer: Actually, we multiply by 0.5.

Question: But what if multiplication is funny? The old 360 way of

multiplying lost the bottom digit of single precision, if a nonnalizing

11-5

11-6

shift was necessary, because there was no guard digit.

Answer: We are assuming that if there are only a couple bits in each

number, the multiplication will be exact. In constructing X, we are

multiplying by a power of 2 and it is reasonable to expect the multipli

cation to work if one operand only has one bit. But even if X is in error,

it doesn't matter because you subtract it off again. All that really matters

is that X have the correct characteristic.

Single+ Single~ Double Sum

IXI > IYI; X and Y are single precision and the arithmetic is

dirty but within an ulp of what you want. We are adding X and Y and

want to come out with two single precision numbers Z and ZZ, such that

if you do an infinite precision add of Z and ZZ, you get exactly the

infinite precision sum X+Y. We'll go through the argument assuming clean

arithmetic, then consider the cases where dirty arithmetic makes a difference.

X

I v
..__ __ z _ ___.1 ._I __ z_2 _ __,

The Algorithm To Do This

SSDADD(X,Y,2)
DIMENSION 2(2)

2(1) = X+Y

2(2) = Y-(2(1)-X)
(may be rounded, so correction may need to be negative)

IXI > I y I

Z(l)-X will be done precisely. Since the error is less than 1 ulp and

because both 2(1) and 2(2) are representable, they must both be exact. --

11-7

In the case of dirty arithmetic, you get in trouble if sign(Y); sign(X),

and IV!<} ulp of X. So we test in the routine for this condition (using

the bit extraction routine), and if it holds, return X as Z(l) and Y

as Z(2), even if Y is very much smaller than X.

We use this to get clean single precision and to know how to round

correctly we do need the exact answer. This routine is also used in the

dirty double precision add routine and there we have good aritilnetic already.

Kahan: I'm not convinced you've got this working, or that you're so

close that I'd accept it as feasible. There are still lots of holes.

If you could work out not just the program but the way of understanding

arithmetic so that you could write programs like this without great agony.

it would then be possible to take a program that worked on any machine and

if it had been written in such a way that, somewhere, the code on that

machine had been designed to simulate first a standard machine using rounded

arithmetic, you would then be able to use that code. if you too could simulate

the same standard arithmetic. In principle, code conversion would be

accomplished by considering the algorithm that converts one kind of code

into another and imbedding it in your conversion procedure. People can't

do this yet without making the conversion routines very machine dependent.

You're trying to solve th~ problem of designing the conversion routines to

change any machine's arithmetic into some standard arithmetic on which you

base transportable programs.

How Much Precision Do We Need?

We might come to the conclusion that multiple precision is something

everyone wants but no one wants to pay for. The sales of the 360/85 were

poor, possibly because of other factors such as I/0 mismatch with the CPU.

We rarely see exactly what the benefits and costs of double precision hard

ware are, because other improvements are usually made in the machine at the

same time. So what follows is in the nature of opinion.

Whatever precision is supported as standard, and this may be the so

called double precision at most 360 installations, there should be a cheap

way of getting double the standard precision, preferably in hardware. A

little judicious use of double precision makes it possible to guarantee

good results in single precision, and more importantly to dispense with

much of the error analysis that must be done when the calculation is carried

out in single precision. In the quadratic, double precision enables us to

guarantee answers correct to a few units in the last place of single preci

sion and we need endure little error analysis. In matrix calculations, we

can expect that double precision accumulation of scalar products will reduce

the effect of rounding error to well below the uncertainty in the data.

So double precision ts useful, but is it worth what it costs? We can

practically say that the cost of double precision hardware is so small in

the total system that we can disregard it. But if double is good, is

quadruple precision better? It turns out that demands on precision taper

off very rapidly for almost all technological users. Most orbit computa

tions when done rather crudely, require at most 100 bits to give satis

factory results during the lifetime of most artificial satellites. Indeed,

no physical constants are known to more than about 18 significant figures

(60 bits).

The situation for mathematical calculations is rather different. For

any precision a calculation can be specified which requires that precision

to yield an answer with a single significant digit. Where cancellation is

very severe, as in the evaluation of integrals of oscillatory functions,

11-8

-

-

arbitrarily large precision is required, and how large can't be predicted

in advance. We can safely assume that if we do these computations and the

result is inadequate, we can increase precision and do them over, and the

cost of the preceding runs with 1esser precision will be utterly negligible

compared to the cost of the current run. Since the amount of precision 15

unpredictable, software.seems to be required.

Actually, really high precision spends so little time on exponent mani

pulation that it is really more in the realm of integer arithmetic and is

outside the scope of this course.

In contrast to the preceding, it is very conmon to want just a little

bit more precision. Let's examine a subroutine to compute a transcendental

function. These functions are conmonly approximated by rational functions

such as

Evaluation of this function requires five multiplies and one divide. An

equally close approximation can be had from a function of the fonn

which only requires three divides.

Although the latter expression can be evaluated more quickly,·we have

ioore trouble from cancellation. Therefore we would like to have a few more

bits in order to use the second method. If we don't have them we may have

to go to a good deal of trouble to get our function accurate to our working

11-9

11-10

precision.

Almost all the elementary Fortran functions get into trouble for precisely

this reason. Consider A**B, which is usually computed as exp{B log A).

Suppose A~ l and B is huge so A8 is also huge. Then log A and B

will, say, at best be precise in single precision, so their product is

accurate to 1 ulp in single precision. Now the logs and exps are generally

with respect to the base of the machine. The integer part of 8 log A will

be removed and used as the characteristic of A8. If Blog A is large,

the mantissa may have few significant figures. But it is solely the mantissa

which determines the significant figures in the final result. Consequently

the final result may be accurate to much less than single precision. Clearly

we need extra digits, equal in number to the number of digits that could

be occupied by the integer part of a logarithm of the largest number repre

sentable on the machine. Then we can guarantee that A**B will be correct

to a few ulps in single precision.

What is the meaning of all of these considerations for the hardware

designer? He must understand the level of accuracy his users will want.

In order to get single precision accuracy the user will need, if not com

plete double precision, something close to it.

Double precise products and sums and differences of single precision

operands have to be developed anyway. They might as well be convenient for

the user to access. Quotients are more difficult but at least a remainder

should be supplied, as on an old mechanical desk calculator!

The organization of the 7094 was similar to what we have sketched. We

could even ask for a bit more than double precision in the accumulator, as

in the GE 635. Unfortunately there was no single instruction for storing

the extra bits.

-

The machine designer who has put the extra bits in may now be amused

to discover that the language designer has made it difficult to use the

extra bi ts in higher 1 anguages. In most thecri es of types, "real II and

"double11 are completely distinct entities which happen to have rules for

converting between them. The concept of usi~g a few bits of double preci

sion in a single precision operation has yet to be incorporated into such

theories.

Seemingly we must design the hardware, the language, the compiler, and

the operating system (to handle overflow, etc.) together from the ground up!

We will have to leave the reader confronted by this grim prospect.

11-11

-

12. INTERVAL ARITHMETIC

We have by now seen enough to be ready to avoid error analysis whenever

possible. Certainly users ought not to have to do error analysis. As

computer scientists it behooves us to investigate whether it can be done

automatically to avoid the staggering cost of manual error analysis.

The first step in this direction was called significance arithmetic.

Basically, machine numbers were allowed to be unnonnalized, the number of

zeros on the left indicating the uncertainty in the number:
t

,.....~

I 2° j . l 00000 I ~ l + 2-t- l
2 -

Then each word actually represents an interval.

12-1

We have to construct rules for dealing with such intervals. The rules

were worked out by N. Metropolis and R. Ashenhurst. There is a choice between

intervals that are possibly wider than the desired interval, and intervals

that are possibly narrower, because most intervals can't be represented

precisely in significance arithmetic, e.g. in 3 significant decimal arith

metic, (02.0 ± .05) x (05.0 ± .05) = 010. ~:~~~~ ; should we substitute

010. ± .5 which is too wide, or 10.0 ± .05 which is too narrow? The opti

mistic point of view is to choose an interval that is sometimes slightly

narrower than the most appropriate interval. Examples can be constructed

where this policy will give no hint that dreadful errors have occurred.

The pessimistic approach is to take an interval slightly wider than the most

appropriate one. Then you can get error bounds so unrealistically bad that

they are ignored.

12-2

Interval arithmetic contains all the intervals of significance arithmetic

plus many more, and so is more powerful and flexible. We are familiar with

intervals from mathematics:

if a~ b, [a,b] = {x: a~ x ~ b}

if a< b, (a,b) = {x: a< x < b}

Arithmetic on intervals is based on the idea of a Minkowski sum:

[a,b] + [c,d] = {x+y: x e [a,b], y e [c,d]} = [a+c,b+d]

and in general

A op B = {a op b: a e A and be B}

,

where we use capital letters for intervals. In all cases we only need to

know the endpoints of the operand intervals to get the endpoints of the

result intervals.

Naturally the first question to arise is how to deal with round-off.

When an endpoint of the result interval is not precisely representable we

widen the interval as little as possible to the next machine number, so that

we take a pessimistic point of view, but less pessimistic in general than

for significance arithmetic.

We can see that the following operations are going to cause problems

(using 5 sig. dee. arithmetic):

Good

[2,2]·[2,2] = [4,4]

[1 , 1] + [- 1 0 -
3o , 10 -

30
) = [. 99 999 , l. 0001]

Bad

[2,2)•[2,2]

[l, 1] + [-10-30, 10-30]

or

or

= [3.9999,4.0001]

= [l, 1)

(.99999.1)

(1,1.0001]

-

It's pretty hard to get software that will get the good result in both

computations. We would seem to need hardware that offers the choice of

rounding to the left or to the right, under program control. Such hardware

12-3

is not usually available so most interval arithmetic generates an unnecessary

spread on numbers that should be exact.

Triplex arithmetic was invented to ameliorate this problem and to

economize on storage. Intervals are represented by midpoint and a spread,

as the following correspondence shows:

[a,b] ~ {a;b,a 2b1

[x-o,x+o] ~ {x,o}

This system works well on small intervals but poorly on large intervals.

If x ~ o the small end of the interval can't be represented very well

because of cancellation. Then if we take the reciprocal of such an interval

it becomes rather uncertain. Generally interval arithmetic is more effec

tive. The computation is the same because the endpoints of result intervals

must be computed the same way in either case. The advantage of triplex is

if the intervals are all small, then less storage may be required for o

than for x.

To secure this storage advantage you must give up something important

of a practical nature. We would like to use the built-in two word double

or complex handling facilities of standard Fortran compilers to implement

interval arithmetic. Then we could avoid rewriting much of the Fortran

compiler.

There is one more problem with intervals in general, and that involves

reciprocals. Certainly 1/[l,2] = [},1]. But what about 1/[-1,1]? This

would be (oo,-1] u [l, 00). We can handily write this as [l,-1]. That is,

we interpret [a,b] as (00 ,b] u [a, 00) when a> b. Then the system of

intervals is closed under rational operations. This amounts to discarding

our conventional v·iew of the real n1JT1bers in favor of a circle with one

-oo ~<----a-----1a---a----) +«>
-1 0 1

infinity (a subset of the projection of the complex plane onto a sphere):

00

0
-1 O 1

We will need some new symbols. For the interval containing all the extended

real nlJllbers we have

Q = [-oo, -too]

For the point 00 we have

oo = [oo,oo]

Then we have an indefinite situation for ~ = [-too,-00], which is not a valid

interval.

12-4

Clearly we will need a machine representation for infinity. These con

ventions will enable us to avoid the nuisance of most of the usual implemen

tations of interval arithmetic which lack the complementary intervals contain

ing oo

We see that our definition of interval operations makes a closed system

when exterior intervals such as [l,-1] are included, provided we make proper

conventions concerning oo and n.

Some of the axioms of normal arithmetic are not preserved in interval

arithmetic. For instance, only a sub-distributive law holds:

A·{B+C) C A•B + A•C

Likewise

Equality is occasionally achieved in these laws. In the first case, when

(l) A is a real ntmber [a,a]

or (2) B•C 1 [00 ,0] and 00 ♦ A

then A•(B+C) = A·B + A·C (exercises for student).

There is also a kind of sub-cancellation. That is,

~ ~ ~ and {A-B) - (C-B) ::> A - C

In both cases equality is achieved when B is a real number [b,b].

Different theorems have to be discovered and applied to interval arith

metic. There is, for instance, an inclusion monotonicity theorem:

If A C X and B C Y then A ® B C X ® Y for any

operation ® e {+,-,/,*}.

We also have to replace the total ordering of real numbers by a partial

ordering of intervals. It is difficult to formulate a satisfactory ordering

of overlapping intervals, or with any exterior interval.

More about interval arithmetic may be found in:

E.R. Hansen, ed., Topics in Interval Analysis, Oxford University
Press, 1969.

12-5

W. Kahan, Notes for University of Michigan Su11111er Course, 1968.
R. Moore, Interval Analysis. Prentice Hall, 1966.
K. Nickel, "Error Bounds and Computer Arithmetic," IFIP 68
Proceedings, pp. 54-62.

Interval Arithmetic Functions

We have seen that interval arithmetic possesses a number of peculiar

properties. One systematic approach would be to invent a new kind of alge

braic structure having these properties, and then deducing theorems about

12-6

such structures in general which of course would apply to interval arithmetic.

Such an approach would, indeed, be looked upon with favor in many mathema

tical circles, but our purposes will be better served now by turning to an

examination of the problems involved in defining functions whose domain and

range are intervals.

Let us start with the simple set of functions f(A) = An for n a

positive integer. We could define A"= A•A·A·••A n times. This causes

an unrealistic large spread in the size of the interval. If we define

instead

we find that
n A ~ A·A·A• • ·A

If A= [-1,1] and n = 2 we find A2 = [0,1] and A·A = [-1,1].

We are going to have to differentiate between functions and the

expressions for computing them. For real n1.111bers the difference is rarely

significant mathematically. For intervals the situation is totally different.

Consider the three expressions

E _ x·(x-y)(x+y)
l - x2 + y2

E = x(x-y) (x+y)
2 X•X + Y·Y

--

These expressions are all representation for the same rational function of

scalar variables. The last is best in the case x = y = O because, as

x ~ O, E3 ~ 0 regardless of how y behaves.

But now suppose x + (0,0] and y + [O,O]. Then E1 = E2 = n. If

we evaluate (;) 2 as (y)(y) we get E3 = n. But if we do it correctly,

we compute

~ = LQ_,_0_l = Q
y [O";"OJ

(y)2 = {z2: z e {;)} = [O,+oo]

l + (;) 2 = [1,<X>]

[0,2]

(-1,l]

E3 = [0,0]·[-1,l] = (0,0)

The single point (0,0] is certainly an improvement over n.

12-7

This example demonstrates that it is pretty tricky to define interval

functions except by stating their interva~ expressions. Then interval

expressions which would seem equivalent in scalar arithmetic will often define

different functions in interval arithmetic, and moreover it is often difficult

to detennine whether two interval expressions define the same function. To

discuss these issues systematically we will write scalar functions as

We identify the rational expression easily with the function. Then we define

12-8

as what we get when we substitute in the expression for f the intervals x1
for the variables xi. We also need to define the range of the function f

as

Now we have a theorem generalizing our previous monotonicity result:

The strength of this theorem is that it is independent of the expression F

used for f.

For rational functions we can prove the theorem by induction. Then

other functions of intervals are defined to satisfy this theorem.

The Independence Phenomenon

What we would like to do is always compute with the expression that is

equal to the range of the function for every argument. Then our intervals

will not expand unnecessarily. Such an expression sometimes exists, but

scmetimes does not.

An example where a solution exists is in the case where

Then 4>1 (X) = x!2, 4>2(X) =
1

: 2. These interval functions are distinctly
X

different and

The variable ~ occurs in the second expression only once. When we evaluate

~1(X) we actually evaluate w(X,X) where w(X,Y) = v!2. That is, the two

occurrences of s are independent, so that w(s,n) = n~2 . This is called

the Independence Phenomenon.

We can visualize what is happening as something like:

X
/ ,.

I I

I I

' I - - /\/
- _L_V

,.

n

The square domain in the sn plane represents all the values that could be

used to compute w(s,n) with s e X, n e X. The values of the function

~ as it ranges over this domain are represented by the floating curved

surface. The projection of this surface on the w axis is ~1{X). The

line segment subset of the square domain is the set of values that s and

n could actually obtain -- namely those where s = n. Their set of values

w(s,s) is a line segment subset of the curved surface. The projection

~2(X) of w(t,s) is a subset of the projection ~1(x) of w(s,n).

There are other problems besides the independence phenomenon. Remember

we are trying to find a rational expression which gives the same result as

the range of the function we are trying to compute. Suppose, for instance,

we have a cubic polynomial on an interval in which the maximum and minimum

are defined by the derivative vanishing rather than the endpoints:

12-9

X
f(x)

Let us suppose this cubic has integer coefficients. The co-ordinates x,

such that f 1 (x) = 0, are defined by solving a quadratic equation with two

real roots. In general these roots involve surds and are irrational.

Therefore f(x) at these points will also be irrational numbers. That is,

Rf(X) has irrational endpoints. In general~ rational expression F can

yield the correct interval.

That is not to say that we can't come arbitrarily close. We can chop

the interval X into a number of parts. let

Then

N
X = u X.

l J

Rf(X) = URf(X.) CUF(X.)
. J - . J
J J

We claim that if the function is reasonable and the Xj are chosen small

enough, say a few ulps wide, then F can be chosen so that u F(Xj) is

just a few ulps wider than Rf(U Xj).

12-10

We will outline a justification for such a claim. In general, a function

f(x1;x2; ... ;xn) has many corresponding expressions F{x1;x2; ... ;xn). We

want to find an expression where each x. appears only once. If it appears
l

more than once, give it several different names and increase n. We will

consider the ramifications of this later.

Now we would like to assume that f is differentiable and that the

-

intervals X. are so small that they are infinitesimal, which means
J

XJ. = {x. + dx.: I dx. I < dp.}
J J J - J

Then we find that

We have in mind a box as the domain of f:

12-11

The point x1;x2; ... ;xn is centered in the box, a rectangular parallelopiped.

Then Rf consists of all the values f can take over the box domain.

Clearly, then, for any large rectangular parallelopiped domain, we can break

it up into many infinitesimal boxes. Each box detennines an infinitesimal

interval of the range of f. The union of all these infinitesimal ranges is

infinitesimally close to the range of f.

Clearly, part of the technique of interval arithmetic is the division

of intervals into smaller parts for analysis. We don't want to do this any

more than necessary. We wi 11 take advantage of monotonicity of functions

wherever possible so we can just take the values at their endpoints:

i

/
I

I

/
/

/

____ _j___l ___w,__,__:~

In this example we have three monotonic intervals and two uncertain ones.

Since we replaced multiple appearances of a variable with several

independent variables ranging over the same interval in an uncorrelated

12-12

fashion, we should investigate what widening effect this has upon the intervals

we compute. As an example we could have

~(x) = 21x = f(x,x) , where f(x,y) = 2~y

Then the range

(

In general the interval on the right is wider than the interval on the left.

To start to see why this is so, recall that the statement

X Rf(X,Y) = F(X,Y) = 2+y

is true if X and Y are actually independent variables. But

Rf(X,X) S F(X,X)

We have seen that in special cases we can rewrite ~ so that equality holds.

In general a rewriting is not practical or possible so we need to see

how much wider the intervals can become. Suppose X is an infinitesimal

interval :

-

-

X = x + [-dp,dp]

Then when we can perform a Taylor expansion of f(x,y) in each variable at

the point (x,x), we get

Note that the expansion is performed before we substitute x for y.

We want to compare this with

Since d$ = {at+ af) (x x) we can see that ax ax ay ,

f ~ ,~x,x) I + /~x,x) I
so that R$(X) c F(X,X). In the particular example f(x,y) = 2~y• ~: .:::_ O

12-13

and ~; ~ 0 so we would expect some cancellation if x and y were properly

correlated. This analysis shows why distributive laws and cancellation

laws fail: certain interval variables appear twice and are not properly

correlated.

To cure the problem requires symbolic analysis which can't be made

routine. Sometimes monotonicity properties help, so that we can evaluate

the interval function by evaluating the scalar function at the endpoints.

Sometimes the extrema are useful. One suggestion has been to transform the

function with a midpoint expansion, as follows.

Suppose, then, that we want to evaluate R$(X) for some ~(x). We

could let

Then we could consider the Taylor series or the divided difference expression,

In the later case

Suppose we can do the division in the divided difference explicitly [l].

Then we can write

Then the width of the interval in the range is some multiple of the width

of the interval in the domain. We hopefully can find an expression for !~

which computes a narrow interval for a narrow interval argtJTient. There are

theorems which indicate when the interval obtained from ~(X) above is

tighter than that obtained from

~(X) = $(X)

12-14

If ~ is, for instance, already a divided difference we can expect

trouble from this scheme if we can't do the division symbolically; then we

might divide by an interval containing zero. Therefore we need a sophisti

cated symboJic manipulator at execution time. One of the better implemen

tations of interval arithmetic was at the University of Wisconsin by Moore,

and it contained a symbolic manipulator. He wanted to get error bounds for

systems of differential equations. To get the advantages of interval arith

metic he had to limit himself to differential equations that can be expressed

in terms of rational functions. Then the computer would symbolically

differentiate the rational functions, not to get better interval arithmetic

but because the partial derivatives were needed to compute the error bounds.

His differential equation solver never worked properly, however, as it gave

utterly pessimistic bounds.

What Can You Do With Interval Arithmetic?

No one else has gotten good results from interval arithmetic. There

have been some results by the group at Karlsruhe reported by Nickel. They

are rather handicapped by lack of a symbolic manipulator.

12-15

Let us see what kind of theorem they can prove. In particular, consider

the solution of some equation ' f(x) = 0 by Newton's method. We want to

and we assume that such a ~ e X, our initial
0

interval. Then, with x
0

e X
0

as a start, let

f(x)
x - x O e X l - o • f' (x

0
) l

Here F is the expression one gets by simple substitution of the degenerate

interval for x
0

in the expression for f(x), F(x
0

) would be a scalar

except that rounding errors will be incorporated into the computed intervals,

widening them into non-degenerate intervals. F'(X
0

) is obtained by substi

tuting the interval X
0

into the expression for f'(x).

What could we say about such an algorithm? The usual Newton method
f(x)

yields x1 = x0 - f'(~o)· Then x1 e x1, even with rounding errors taken

into account. We could take this as the definition of the x1 to use in

the next step of the interval scheme.

We can prove that if ~ e X
0

, then ~ e x1. First, notice that for

purposes of this proof, we can replace F(x
0

} by the scalar f(x
0

). This

only shrinks the size of the interval we compute. Our second observation

is that

and is therefore in X
0

. Then

Q.E.D.

We had better inquire as to what happens when F'(X
0

} includes zero.

The Karlsruhe solution is to kick off the user, since their system lacks

exterior intervals.

The alternative seems to be to replace x1 by

Now every root in X
0

also lies in x1, by repeated application of the

previous argument. Therefore every root in X
0

lies in x1 n X
0

•

If the intersection is empty, we can be sure there was a mistake in

12-16

the hypothesis ~ e X
0

. Otherwise we just continue our computation with x1.

If x1 = X
0

then we have squeezed all the infonnation out of this scheme

that we can, and we should perhaps divide up the interval into smaller parts

and work on them separately. Otherwise x1 c X
0

so we have made some progress.

Unsolved Problem. If x1 , 0, and ~ ♦ x
0

, is there some other root in x1?

In any case, we would expect the intervals X; to get smaller until

an interval representing the accumulated rounding error was reached. However,

if there are two roots the final interval may contain them both. In this

case we might have

X :
0

1------- (an exterior interval}

Then the question for the programmer is to decide how to handle the pieces.

-

He should investigate both parts. If any part leads to a null set, he can

conclude that no root was in that interval.

12-17

Nickel's scheme lacks exterior intervals and therefore does not converge

in some cases. We examine such an example now.
2

Let f(x) = x - 1 - x2 which also defines F(X) by substitution.
3 + X

He used the iteration

xn+l = center of Xn+l

He neglected to mention what expression he used for F'(X). We can think of

at least three:

f'(x)=l+g(x)
2 2 2

9 (x) = 1 _ l {x -1) +8(x-1)
0 ! 2 (x2+3)2

gl(x) = 2
2

(8+(x-1~
2

_4}
1-(1-x+T) x+

g2(x) = 8x
(x2+3)2

All three expressions 9;{x) represent the same rational function of a

scalar x, though they lead to different interval expressions Gi(X).

Now, how much wider is G.(X) than Rg(X)? The answer depends on the
1

interval X. If X = [-1,l], then

G
0

(X} = 4 1
[- 3'"2"]

G1(X) = [-½,t] = Rg(X)

G2{X) = 8 8
[-9'9]

In general these expressions are optimal over different intervals. We find

that

Rg(X) = G (X) if X C [0,1]
0

= G1(X} if XS[O,l] or X S [oo,-1]

C G1(X) for almost all other X except d~generate
intervals and (-1,l], i=0,1,2.

12-18

It is interesting that the expression g1 was manufactured to work on (-1,1]

but it is no longer equal to Rg(X) if [-1,l] is perturbed by any amount,

no matter how small.

Nickel actually used G2 so his scheme was

He claimed that his scheme converged quadratically with respect to the end

points of the intervals, for any starting point, until stopped by rounding

error in F(xn). Kahan discovered that the scheme blew up on X = [-1.2,1.2]

because of a zero divide. If their interval arithmetic had been closed under

division they would have been able to get quadratic convergence from any

starting interval.

By mixing interval arittmetic and ordinary arithmetic the Karlsruhe

group is able to get guaranteed error bounds on results. As we have seen,

the techniques are not mathematically deep, the only heavily-used theorem

being inclusion monotonicity. The one other important useful technique

would be symbol manipulation.

It seems probable that technological users -- scientists and engineers

-- would benefit more from a good implementation of interval arithmetic

-

-

12-19

within Fortran or Algol than from any other change in those programming

languages that anyone would consider plausible. The few installations where

interval arithmetic is available at all usually offer it only as subroutines~

but it ought to be built right into the Fortran compiler as a stancard data

type. Perhaps the persons responsible for compilers are too busy p~oducing

new languages!

Probably the biggest problem in a convenient implementation is that a

guard digit and a sticky bit are really vital to keep the intervals from

growing unnecessarily.

13. WHAT CLAIMS SHOULD WE·MAKE ABOUT THE PROGRAMS WE WRITE?t

We now imagine ourselves to be writing library programs for the use of

others who may not be adept in numerical analysis. We would like to know

13-1

what claims we might be able to make about the programs we write, and what

claims we should make. After all, w~~n we studied hardware we found that the

difference between the claims (a+b){l+y) and a(l+a) + b(l+B) had substantial

implications.

The most straightforward situation is illustrated by the SQRT routine.

We would like to claim that SQRT(X) = ✓x if x > 0. (The case x < O is

discussed in section [6] on execution time diagnostics.) Clearly this is

hopeless because certain representable numbers have non-representable square

roots. Perhaps we can state, instead,

- 1 SQRT{x) = ✓x ± 2 ulp if x > 0

Exercise: Show that an algorithm could be devised to deliver this

accuracy.

In real corrputers there are always numbers whose square roots are

extremely close to just halfway between representable numbers. We would

have to compute many more digits than we wish to keep to decide between

cases like

XXXX.49999997 which rounds to XXXX, and

XXXX.50000001 which rounds to XXXX + 1

We shall see how these problems are handled in the Toronto 7094 routines

written by Kahan. To keep the cost of computation reasonable, they guarantee

-I-see also W. Kahan, "The Error-Analyst's Quandary", Computer Science Technical
Report #8, University of California, Berkeley, 1972.

13-2

SQRT(x) =Ix± .50000163 ulps

The 7094 had only 27 bits of precision so the subroutine clearly had to compute

SQRT to about 100 ulps in double precision to make such a claim.

In the 7094 there are eight characteristic bits and 27 integer bits.

Counting only positive normalized numbers there are 234 different numbers.

Of these many just differ by a power of four and are therefore essentially

similar from the point of view of the square root routine. Of these 234

numbers, for 29•27 the error exceeds 1 ulp.

Having lost the attribute of "±½ ulp" we should see if certain other

valuable properties of the square root function remain true. For this parti

cular implementation, monotonicity is preserved. Also, the square root of

the square of a number, whose square fits in single precision, is the original

number.

Further, SQRT(Xtt2) = ABS(X), provided overflow or underflow didn't

occur. A similar test would be

(SQRT(X))**2 = ABS(X)

but this is an example of an impossible demand to make on a square root

routine. It is, after all, in the nature of a square root function to map

the set of representable positive numbers onto a much smaller subset:

-

-

-

This means that at least two distinct x have identical computed square

roots. Consequently the square of this computed square root could be one

or the other but not both.

Concerning the claim SQRT(X2) = ABS(X), one could proceed by direct

calculation, checking all the relevant inputs, which. numbered about 227

in this case. Instead a mathematical proof was worked out. In general we

would hope that colJl)arable claims could be proven for other subroutines, or

at least that comparably rigorous proofs could be given for lesser claims.

Other Functions

It gets more interesting when you consider what to do with functions

other than the SQRT. You cannot always say that you will compute such

13-3

and such a function to within a unit in the last place. Half a unit in the

last place is not achievable, because that is the table maker's dilemma.

To be able to compute a function to within 1/2 ulp, it may first be

necessary to compute it precisely and that may require infinitely many

digits, if the value is exactly half way between two machine representable

13-4

numbers. To make the correct decision you have to discover whether or not that is
true. For
the SQRT, any number whose square root was half way between 2 machine

numbers would not be representable to single precision; so the problem

doesn't arise in SQRT. We saw that we had trouble only when 4X is very

near an odd square; but it couldn't be equal to that odd square because

4X is even.

It isn't clear why the dilellllla cannot occur for, say, the exponential

routine. It is possible, although we have every reason to doubt it. Could

you construct an argument X, such that ex was exactly half way between

* 2 machine numbers?

Question: What is the significance of a number being transcendental?

Answer: A transcendental number or an irrational number cannot lie

exactly half way between 2 machine representable numbers and the table

maker's dilemma will not arise. But the dilenvna can be arbitrarily closely

approximated.

Question: Using the infinite series you can get to within a half ulp?

Answer: Yes, you can compute them as accurately as you like. And

you know if you compute them accurately enough you can decide. But if you

didn't know that the result couldn't be half way between 2 machine numbers,

you might have to compute to infinite precision, because no error, however

small, would enable you to render a decision.

*Actually, ex is a bad example. It is known, I think, that for all rational

X, ex is transcendental (not rational), except for e0 = 1. A similar
result then follows for the logarithm. And similarly for the sine and cosine.
But there could be other values where the issue is in doubt.

--

Reasonable Bounds for Other Functions

Let us consider some reasonable and plausible bounds for some other

functions~ These numbers are in ulps for routines on the 7094.

SQRT < .50000163

L0G,QBRT < .52 *

EXP < .77

CABS < .854

COSP I , DSQRT}
< 1.0

SINPI,DQBRT

COSPI and SINPI

COSPI(X) is what you ask for when you want to compute cos(nx).

cos(nx) vanishes when x is half an odd integer; the routine does

vanish exactly at those points.

The claim that the error is at most 1 ulp is reasonable, even near a

zero, because we know exactly what the function looks like near its zeros.

2k+l 3 cos 1r(-2-+ ,) ::: ±' ± t;. /6 + • • •

13-5

You find out what ~ is by subtracting half an odd integer (repre

sentable precisely for integers of decent size), and compute as accurately

*rhe .52 for QBRT is an acknowledgement that it is not a sufficiently impor
tant function to bother getting a better bound on the error. For this
error, however, I was able to compute all the arguments for which the error
was approximately that big. We'll see how that was done later.

as you want using the power series.

The reason I'm pointing all this out is because for functions like

cos and sin, eveh though we know where the zeroes are and how the functions

behave near them, the roots are half integer or integer multiples of n,

13-6

and we don't know n exactly. We know it to a large number of decimal

digits, but we can't even represent it in the machine to as many digits

as we know. Thus we are unable to say exactly where the functions vanish.

Computing Trig Functions When TI Is Uncertain

Let's see how this uncertainty in TI contaminates our ability to

compute the trig functions.

Suppose I wish to compute sin x. Since sine is periodic, the approxi

mating function need not be repeated.

1T

0 2

Need only consider
this arc in computing
sin x

What is conventional to do is to have 4 intervals:

CD

·-

-

In region 1, approximate sin x by an odd function; in region 2 approximate

what amounts to cos x by an even function. Each arc is really only half

as long by syrrmetry arguments; you build up the whole function by piecing

together these arcs. In order to use these approximations, you have to

reduce the given argument to 1 of those 4 intervals. That means dividing

by some integer or half-integer multiple of n.

You have to compute and represent:

i or TT/2 or TI/4 =integer+ fraction

The integer tells you which interval and which sign to use (that's called

quadraproduction); the fraction says how far to move in that interval.

Then someone may say, why not use a representation that does not

involve this argument reduction. There are infinite series after all.

But look what happens in sin x for a moderately large argument.

x3 x5
sin x = x - 6 + 120 -

Say x = 100. How many terms will you have to carry? What if x = 10,000?

The series very quickly becomes useless, no matter how much work you were

willing to perform. It is not because you have to compute a large number

13-7

of tenns; the problem becomes acute when you realize that most of the digits

you compute are going to cancel off.

Computing SIN 100

What happens for x = 100? You know sin x cannot exceed 1, but

the first tennis 100. The leading two digits of 100 have to cancel off.

x3/6 = 106/6; that gives 5 digits to be cancelled off. x5/120 = 10101120;

8 digits that must be cancelled.

After this the terms get smaller; but you see you'll have to carry

8 decimal digits over and above the 14 you wanted in your answer. That is

a more serious fact than having to compute many tenns; they just use a do

loop and take a few microseconds. But the extra digits require double

precision and that is not done with a do loop. That takes a D.P. declara

tion and means the whole D.P. package sits in core.

13-8

Thus, while it is not impossible to do things this way, it is impractical.

Accuracy for Trig Functions

To make things more interesting, suppose I want to say my result is

accurate to within a few units in the last place.

How close to a zero of sin x can we come? When you are close to a

zero, sin x ~ x (the slope of the graph is nearly ±1).

1{-sin x is nearly equal to this distance
zero

How small can that distance be for numbers representable in the machine?

If you represent numbers to 48 bits, you can approximate a root to within

96 bits, by a dodge.

You want to represent mn by a number that for all practical purposes

is an integer (it has to be rational in the machine).

mn o.:: P/q q is a power of 2

You are representing TI by:

p, m are each 48 bits

There is a theory that says if you allow yourself integers of a certain

number of digits, you can approximate irrational numbers to at least twice

as many digits as in either numerator or denominator. That 1 s reasonable

since you have twice as many digits to play with.

For certain, abnormal numbers, that is the best you can do. For most
* numbers, you do better.

We1 ll just assume we can match the zero to 96 significant bits. Then

you'll need another 48 bits. It looks like you'll have to carry 150 bits

after the binary point, to get 47 or 48 that are correct. Not to mention

the digits before the binary point that are going to cancel. Now you see

the utter impracticality of it all.

Question: It appears there are several reasons for wanting to reduce

x. One is the fact that you'll get overflows. That seems even more impor

tant than questions of precision.

Answer: Of course, if x is enormous, x3 would overflow before you

got anywhere. But that situation could be coped with, by whatever means

you used to cope with multiple precision. If you have to assign extra

words to the right, you wouldn't mind assigning a word for the exponent.

More to the point is if x is small; then x3 may underflow and you

may get all kirrl; of messages that have no significance at all. In cases

like this, x is already a very good approximation to sin x. If

x = 10-100, sin x = x is correct to something like 100 decimal digits.

Question: Can't you tell people something who want to compute things

like sin 10-lOO? Like maybe to rephrase it?

Answer: I really haven't explained how I'm going to do sin x. I was

only showing why the obvious ways won't work. You need 150 digits to the
* See Hardy and Wright's book on the theory of numbers.

13-9

right of the point if x is close to a zero, and some interesting number

to the left if x is large. The conspiracy is getting worse; that's why

we don't do it that way.

Quadraproduction (Argument Reduction)

So we use quadraproduction. That gets rid of needing digits to the

left of the point. But that has not gotten rid of the problem of carrying

digits to the right. In some respects we have made that problem worse.

Remember, we don't know the value for rr. And no matter how many

digits we put in for n, we can't do the division, X
(rr/2)' You compute:

(n~2)(l+~). ~ is at most l ulp of the precision you are using for rr and

the division. You are going to comnit at least 1 rounding error in the

division. And you have already made an error in rr.

You have effected quadraproduction not on x but on x(l+~). Already,

you are computing the sin of the wrong angle. You can imagine what that

will do if x is close to a zero. You just moved the argument. You are

computing for the wrong angle, so you can't possibly get sin x correct

to a unit in the last place for any sort of moderately large argument.

Say you do division to double precision and x ~ rr.

1T

You have moved x by a unit in the last place of double precision;

the closest x can come to a zero is about 1 ulp of single precision;

13-10

you still have roughly a single precision word to play with.

The situation isn't too bad at TI, 2n, or 3TT. But how about 105
TT?

You'll have lost 5 decimal digits.

Error in SIN(X} and COS{X)

How you actually compute the sin is not pertinent to this class. What

is important is that you have to think about what you can compute in a rather

different way than you might be accustomed to. Namely, that whenever you ask

the ·machine to compute SIN(X), you can be fairly confident that that is not

what it is going to do.

Suppose someone did demand SIN(X) = sin(x) ±½ ulp. Unless x is

restricted to an unreasonably small domain this isn't possible. The first step

in the SIN routine is to find the fraction frr-l-znJ• Unfortunately the

value of TT is not available in the computer to an infinite number of figures

so 2: is computed erroneously. For large x the fraction is only a few

bits so that any errors in 7Er are revealed highly magnified by cancellation

in 2~ - LT7r"J.
Clearly we can't compute any more accurately than sin(x(l+~)) for

some small ~. Then for x ~ ~ the uncertainty in the argument is comparable

to TT so the computed result has no significant figures. Fortunately the

first few integer multiples of TT differ from representable numbers only by

a modest fraction of an ulp in single precision. By using double precision

for TT and the division frr it is possible to get fairly good results for

x ~ 100, which is not possible in single precision.

The claim that might be made would be

SIN(X) = sin(x(l+~))

Even this constraint is difficult to satisfy for small ~' especially in

the region of a maximum:

1!._ 2-13 1r 2-14 1r
2 2- 2

13-12

l -2- 27 is the next smallest 7094 number below one. Suppose we wish

to report a sine just less than halfway between l - 2-27 and l. Then the

natural output is to round down to 1-2- 27, which is the sine of about
1r -13 1r -14
2 -2 The number we wanted to compute was the sine of about 2 -2

Therefore we compute sin(x(l+~)) for ~ ~ 2- 14 ~ 10-4 , because we have

rounded the answer to fit in the machine. This value of ~ seems to be

unnecessarily large.

Consequently we limit our claim to

SIN(X) = (l+c)sin(x(l+()) , l~I < 10-15 (~ l ulp double precision),
I c I < • 52 ul p

It is an inherent feature of the sine function that we must state our accu-

racy in this complicated form rather than in the simpler forms we considered

earlier. Otherwise we would have to make a terribly pessimistic statement

about the subroutine.

Since we have such a peculiar form for our uncertainty, we should inves

tigate what useful properties our computed values have. For the Toronto

routines it was possible to prove that the difference in the computed SINE

for two consecutive representable arguments either had the correct sign or

was zero. It was also true that

ABS(SIN(X)) ::_ 1.0

ABS(C0S(X)) ~ 1.0

SI~ X ::_ 1.0

I l - (DBLE(SIN(X))**2+ DBLE(C0S(X))••2) ! < 2•10-a

13-13

One reason many trigonometric identities were very nearly preserved was

that the argument reduction 2x - L2xJ was done in a uniform manner for each
'1T 'IT

trigonometric function. That is, ~ depends on x but not on the function

being computed. £, on the contrary, depends only on the function value

and not at all on x or on the function.

To make things more convenient for scientists and engineers, the follow

ing functions are also available:

SINPI(X) = (1+£)sin(nx)

COSPI{X) = (1+£)cos(TIX)

Then ~ = 0 because argl.lllent reduction involves only integer subtraction.

You could reasonably expect C0S(X) to satisfy:

C0S(X) = (l+y)cos(x(l+~))

where the ~ is the same as in SIN(X), IYI ~ 1 ulp of single precision.

You get the same error ~ because you do exactly the same division and then

interpret the integer part differently.

SIN(X) and C0S(X) computed for very large operands X may be wrong,

but nevertheless they are the sin and cos of some reasonable argll!lent.

Consequently:

sin~ tan to within a few ulps cos

Question: If you pass the sin routine a very large argtJTient, the argu

ment itself may be represented rather poorly.

Answer: That's right. If X is really large and it is at all uncer

tain (consider, where did X come from, another computation maybe?}, the

uncertainty in X will cover a large interval, and the sin and cos could

oscillate several times in that interval. That does happen. And when it

13-14

does, I think the most we could hope for is some kind of internal consistency.

Question: Shouldn't there be a diagnostic?

Answer: There is sometimes. But it is hard to say whether this is

an error or not. In some asymptotic fonnulas, although the sines and

cosines oscillate in an uncertain way, they are multiplied by things that

are very small. Such as in the Bessel functions:

it approaches -1 sin x. People sometimes do have formulas in which they
rx

want trig functions of large arguments. But the uncertainty gets less

important as the argument gets larger, as these later tenns are a small

contribution to some series.

Question: Wouldn't you suggest to people that they write their own

sine routine, so that the arg1J11ent is in some interval in which you can

actually compute the sine, using the system subroutine? If they are just

going to get garbage, they should get a result that is essentially zero.

Answer: But it really isn't garbage, you see. The function is only

important where it is big (in the above picture, say), and there you get

reasonable accuracy, sometimes. Remenber, you only get troubles like this

-

-

on our machine for x ~ 240 or so. That's gargantuan. For numbers like

10,000, or 100,000, the sin and cos will have deteriorated a bit. but

this is generally not serious for the applications involved. It is rather

difficult for somebody to go through the analysis that tells him he should

do something different rather than accept the values as computed.

For people who use abnonnally large arguments and may not realize what

they are doing, you're right -- they should be given a diagnostic. But that

involves a decision -- where to draw the line. Should you tell him when

13-15

he's lost all his digits, or only half of them, or what? On IBM equipment,

it is customary to issue a diagnostic when changing the argument by l ulp

can run you through an interval comparable to n. On the 360, this means

x ~ 106. On the 7094, x ~ 108. My programs don't give a diagnostic. They

just say here is what you get and if you are worried about it use the

SINPI and COSPI routines, for which no diagnostic is needed. Of course,

for roughly half the machine number arguments, SINPI and COSPI give you

+1, -1, or 0. The numbers are mostly integers times big powers of two;

thus SINPI and COSPI usually return O or +1. But that's alright.

We now have a reasonable way of interpreting what you get and why you get it.

What You Can Expect From Error Analyses Generally

I guess I'm introducing you to the rather interesting notion that

instead of being able to say you have gotten something that is wrong by a

unit in its last place, it may be that you'll be obliged to say that the

answer you have differs by a unit in its last place from the exact answer

of a problem that differs by some small amount from the problem you originally

posed. And that is normally what is considered to be a successful error

analysis. But even a statement like this usually cannot be made. For

non-trivial problems such as solving a set of linear equations, even using

a decent numerical method, the best published analyses state that the answer

is the precise answer of a problem perturbed slightly in ill!!!!!. from yours.

This perturbation may be many ulps of some elements of the matrix, so this

statement is not nearly as strong as the statement we would like to make,

that the answer is a few ulps from the precise answer for a problem a few

ulps from the given problem.· That is, if we solve a system of linear equa

tions Ax= b in the usual way, we can show that the computed x satisfy

(A+M)(x+Llx) = (b+6b)

13-16

where nMn « DAD, fttixn << Bxn, U&I « llbO. But if we generalize slightly

to computing the inverse of A, we find for the result X that we get:

(l) X = A-l ± a few ulps is not true.

(2) AX~ I is not true. AX could be much closer to zero than 1.

(3) (X+t.X) = (A+M)-1, with each element of M a few ulps of the

corresponding element of A, and likewise for llX and X, is

not true.

(4) (X+llX) = (A+M)-l for UMU < a few ulps of IIAH

DllXR < a few ulps of IIXII

might be true. This corresponds to the assertion we made for the

trigonometric functions.

Thesis project: Prove that some standard algorithm does or does not always

produce a result that satisfies condition (4).

The best result known is Wilkinson's:

-

-

where the maximum is taken over M such that IIMU < {some number) of ulps

of UAU. "Some number" grows as n114(log n)+const ant_ Numerical analysts

believe this to be entirely too pessimistic -- the evidence indicates that

"some number" should be nconst ant_

The entire situation is best illustrated by a picture. Suppose we have

the point A in n-dimensional matrix space, and we allow an uncertainty

M about A which includes the matrices we consider indistinguishable from

A for practical purposes. Then there is somewhere else the point A-1 and

the set of matrices whose inverses are those of points in the ball A+M.

We would like to state that X is a member of the latter set slightly

en 1 arged by M..:

13-17

13-18

\

\

.....
...

.....
.....

A+M
.....

A's such that x-l is in this set

- -- --- ·--
/ --"-

/ / \

' I '/ I ' ,,

I
I I

I \
!

I \
I

1/ -1
A I

// •
I
\ I

\ I
(A+M)- / I

\ I ,'
I

\._ / I IJ.X

"
/

/

,, '· I X, the computed A-1,
' _,. is in this set. - / -

In reality it has only been shown that the X's lie in a very large
-1 ball centered on A , whose diameter is slightly larger than the largest

diameter of the set of (A+M)-1. Then the A's correspond"ing to this large

sphere form a somewhat pointed set centered on A.
-1 Experience seems to indicate that if the condition number IIAIIIIA II

is not too large the set {A+M)-l does not deviate too far from spherical

sy11111etry.

No example has been given of a matrix A whose computed inverse X

was very far from the inverse of every matrix near A. No one has any idea

how even to construct such a matrix. Nonetheless, no general proof that

the assertion (4) above is true seems forthcoming soon.

How Approximate Are Your Results

The sin and cos have thus introduced you to the notions (pervasive

in numerical analysis) that you cannot compute approximately the right

answer to your problem; you can only hope to compute approximately the

right answer to very nearly your problem. If you can do that, people will

say you have used a stable numerical method.

13-19

There are exceptions which correspond to rather peculiar measures of

what we mean by approximately. For example, if you examine the quadratic

equation, Ax2 - 2Bx + C = O, it is clear that A, 8 and C are pieces of

data. But what about the 2 on x2? Is that datum or part of the structure

of your mapping? If you think of 2 as a datum susceptible to variation,

so that you might have written x2·ooooooo3, then there could be an infinite

number of solutions, whereas the equation in x2 has only two.

The way that the solutions vary with changes in A, B, C and 2 is

different from the way the solutions vary with changes in A, B and C only.

So when you talk about a problem very near yours, you may be fixing things

that might otherwise have been thought of as data, subject to variation.

What Should Be Data

In some cases, the issue, as to what should be data and what shouldn't,

is not altogether clear. What should be allowed to vary?

As an example, I'll talk to you as a CDC engineer or progranmer would.

He would say that nobody can ever know exactly what the operands should be

(I dispute that, by the way). "If you want to compute LOG(X), you should

be willing to accept

LOG(X) ~ (l+e)log(X{l+t))

(That is, he is willing to perturb the argument). You don't know what X

is anyway, so why should you care if I change it a little bit?"

Remember the graduate student working on wing design? [5] He cared.

I would care a great deal if I were computing AB. You write it as:

AB~ EXP{B•AL0G(A))

If B is a large nt.mber you find you didn't compute A8 but rather some

thing else. If B is large, A had better be close to 1, or you'll

overflow. But if A is very close to l, and you have to take

log(A{l+~))

where l+~ is also close to 1, the log can be changed drastically, say

by a factor of two. Then when you do the rest of the computation, you're

dead.

The engineer would say that's perfectly reasonable because you don't

13-20

-

-

13-21

know A and you don't know B. But you might want to dispute that.

l+s Should Not Be In Your Argument

It is my judgement that the (1+,) in the log function does not belong

there because there are perfectly economical ways to compute the log without

it being there. You just have to be a little bit careful. It amounts on

our machine to changing statements like X-1.0 to {X-0.5) - 0.5. In the

first case, if X is close to l the answer may be zero, whereas in the

second case, the difference is taken correctly.

By using a better approximation and a bit more care, you should be

able to get a log function in which the (1+,) perturbation tenn does not

appear. You'll have to agree that it's preferable to think of the logarithm

without that term.

My argument for wanting to get rid of those tenns when you can is that

they make the structure very different from what you're used to and from

what you expect.

That is my argument for putting the perturbation in SIN(X(l+~}) down

to double precision. For arguments in the range of n or smaller, you

could eliminate c; by slightly increasing e. We saw that perturbing x

by an ulp of double precision might change the single precision answer by

a few units in its last place. So you say e is 5 units, instead of l

and you don't mention E; at all.

Hirondo Kuki: "Getting rid of them (factors like the l+E;) gives

you the strictest accuracy requirement for a subroutine that you could con

ceive of. Therefore it gives the simplest goal for the programner to aim

at, insofar as accuracy is concerned. And in some computations, for example

with integer arguments or assll!ling all prior computations went meticulously

13-22

we 11 , where there 1 s no error in the argllTient, the benefit is rea 1 . And,

it is simpler to explain to users. However, it may cost diamond where mere

glass may have served. 11

Being simple to explain to users seems to· me to be the most important

reason of all. Coding the routine is only half the problem. The other half

consists of informing the users what exactly the subroutine accomplishes.

--

-

14. WHAT IS THE BEST BASE FOR FLOATING POINT ARITHMETIC?

It perhaps seems clear that, if there were an outstandingly best base

for arithmetic, humans would have adopted it long ago. The base ten seems

just now to be winning universal acceptance, though this may be an acciden:

of history. However, if we take the point of view, as we have often done

"!4-1

in this course, that ordinary users should have to learn as little a~ oossible

about the workings of computers, then base ten would be preferable as being

closest to their nonnal experience. From other points of view it is ineffi

cient of storage, as we shall see below.

Our machines are basically composed of two state devices so that the

t00st efficient base is a power of two. In this light we see that since

base ten requires four bits, it is really like base sixteen except six of

the bit combinations are ruled illegal and are not used, which seems

wasteful.

Let us restrict our attention then to bases of the form 2k. Then all

numbers wi 11 have a representation of the form (l) i • f for some "norma 1 i zed"

f in the range 2-k .::_ f .::_ 1 - 2-kt_ represented by t digits, and for some

i in the range -2i < i < 2i -1. Then our word length equals the sum of

1 bit for sign, 1+1 bits for biased exponent, and kt bits for the

integer part:

1
bit

Hl bits

t need not be an integer but kt is.

k bits each k bits or less

The analysis to follow shortly will assume this kind of representation.

Let us pause to consider some other forms:

14-2

l. Notice that on a binary machine our normalized numbers always have

a one bit in the most significant position. Since this is constant we could

drop it and save a bit. But then there is no way of representing unnonnalized

numbers. We could not use unnonnalized numbers as a partial remedy for under

flow [6]. It seems that binary to decimal conversion could also be hampered.

If we could locate all the present uses of unnormalized numbers and implement

them in the hardware, such a scheme might be desirable. (It is used on

PDP 11-45 computers.)

2. Another possibility is suggested by the fact that numbers of magni

tude far from l occur much less frequently than numbers of magnitude near

l. Perhaps by some suitable encoding we could find a way to represent numbers

near one with only a few bits for the exponent, and numbers far from one

with more bits in the exponent and less precision, which would be justified

because they occur infrequently. Unless someone can prove otherwise we

imagine such a scheme would make error analysis rather difficult. For

instance, multiplying a system of linear equations through by a scale factor

of a power of two would likely change the computed result. We would then

be faced with the problem of choosing a scale factor to optimize the preci

sion throughout the calculation, so that the uncertainty in the result is

a minimum.

3. We could also try the scheme in [2] where numbers are represented

by their logarithms in fixed point form. One of the co1T111on objections

to this scheme is that addition takes a long time. D. Muller, in an unpublished

manuscript, showed that addition in such a scheme could be done almost as

quickly as multiplication in conventional systems. With advances in multi-

plication hardware this may no longer be true. However, the fact that -

precise representations of 2 and 3 are mutually exclusive is perhaps

14-3

the strongest argument against a logarithmic scheme.

Having considered some other possibilities, we will proceed on the

assumption of a conventional format, and inquire as to which are the valuable

attributes in a number representation.

Clearly precision is an important attribute. By precision we might mean

the worst relative spacing of adjacent machine numbers. For instance, on a

two digit decimal machine numbers are spaced like:

9.9

1111,,11111
9.0 O

9.5

We see that the relative spacing changes by a factor of the base (from i6o
l to 10) near a power of the base. This argues for a small base, so that

binary is best. Generally, the smallest relative difference is

1. 00000. • •

.11111 ----kt l 1s

and the largest is

kt bi ts
,-----/'--,

1. 0000 • • • 1
1 .0000· • ·O

l - (1-2-kt) . 2-kt
1 or 1-2-kt

(1 +2k-kt) - l ~
2
k-kt

1 or l + 2-kt

On the other hand, we can say with equal validity that the spacing is

always one unit in the last place (ulp)! Of course "the last place 11 jumps

at a power of the base. The difference in these points of view is the

difference between the producer and the consumer. The producer of numerical

routines is interested in routines which are the best among all imaginable

on some machine. The best possible routine will have an uncertainty of

½ ulp due to the necessity of rounding to the nearest machine representable

number, so ulps are the natural unit of measure of precision, and variation

in the relative spacing is an implicit constituent of the word 11ulp11
•

The const.nner or user of the routine is more interested in its

relative accuracy, which might be stated as one part in 10
13

. After all,

the precision of his inputs is most likely to be stated in this way. Then

the relative spacing becomes important, since the base affects the maximum

precision an algorithm can achieve. We will consider this definition of

precision for the present discussion.

Besides precision, we would like to know the range of representable

numbers. We shall express this as the ratio of the largest representable

positive number to the smallest representable positive number, which is

Clearly, the more bits we allow for the exponent, the greater the

range, but the less the precision, for fixed word length. To be specific,

the word length w satisfies

w = l + (t+l) + kt

Now if we define the range and precision parameters as follows:

k 2t+l t+l
r = log2((2)) = k•2

P = log
2
(/-kt) = k - kt

we see that

14-4

-

-

14-5

If we can specify p and r ! priori then w is a function of the

base 2k. We want to choose k to minimize the amount of storage needed, w.

Then we should examine the values of k- log2k, to determine the minimlftTI

with respect to k.

base k k- logl

2 1 1
4 2 l
8 3 l.415

16 4 2

We conclude that the best value of the base is 2 or 4, based on the worst

case of a jlftTlp in precision. Perhaps it would be more realistic to base our

decision on some sort of average relative precision. For a number of plau

sible distributions of numbers the best base has been asserted to be 4.

(Brent, (1972) "On the Precision Attainable with Various Floating Point

Number Systems").

We prefer binary over base four because errors propagate in a more

predictable fashion, as we shall see later. Surprisingly, many arguments

are still put forth in favor of octal and hexadecimal bases. In the case of

the 360, base 16 was chosen to reduce the number of shifts required to align

the operands prior to the operation and to nonnalize the result. Empirical

tests on the 7094 had demonstrated that most such shifts were one or two

places, which could be avoided by using base 16.

This conclusion is valid if the time to shift is proportional to the

numbers of pos 1 ti ons shifted and if the dec1 s ion as to how many pl aces to

shift requires no time. This is not generally true. The number of shifts

required is detennined by counting leading zeros and this definitely takes

time unless the base is two, when it suffices to shift until a one appears

as the left bit.

Shifting is often accomplished by choosing which of two sets of gates

between registers are enabled.

14-6

One set is a straight transfer, the other shifts in the transfer process.

In the CDC 6000 machines a tree structure of shifting registers is used which,

at each node, may either shift one bit or not shift, so that any number of

shifts can be eventually accomodated. In general, however, the one or two

bit shifts that IBM was worried about can be accomodated in the time it takes

to transfer the word between registers.

Perhaps some future machine organization will be able to take advantage

of such an idea using a base of 8 or 16, resulting in some simplification of

the hardware, which might save 5% of 1% of the cost of a complete computer,

which seems negligible. Any such scheme will, however, waste an average of

perhaps one or two bits in leading zeros, which is a 1% - 3% loss in available

storage for normal length words of 60-100 bits. A few percent of storage

costs is a much larger price to pay for a hexadecimal base compared to the

simplification in hardware.

However, the foregoing arguments do not yet supply a reason to prefer

binary (k = 1) over base 4 (k = 2). The following arguments are intended

-

-

to illustrate the main reason for preferring binary, namely that the density

of representable numbers is most unifonn when the base is smallest.

Error Propagation on Non-binary Machines

We conside~ division. Let

x = value of X rounded to t digits of base b ~ 2, t > 3

y = value of Y rounded to t digits of base b ~ 2, t > 3

q = value of x/y rounded to t digits of base b ~ 2, t > 3.

How different is q from X/Y?

For definiteness, say bt-l < X < bt, so x is an integer in

bt-l ~x ~bt and Ix-XI_::.}. Similarly bt-l < Y < b\ bt-l ~Y .s_bt,

I I 1 -1 -1 y - Y _::. 2. Now b < x/y ~ b, so b .s_ q ~ b and there are two

cases to consider regarding the rounding of q:

y = 0 -1 so b .s_ q ~ 1 and

1 + which is 2 ulp' of q unless q = 1.

I I l 1-t
y = l l ::_ x/y ~ b so 1 .s_ q .s_ b and q - x/y _::. ~ ,

which is ½ ulp of q unless q = b.

In either case, I q - x/y I 2 ¥> y-t. But we want to bound I q - X/Y I,

14-7

so we must next examine l~-~1- We find l~-il = 1¥+(~)¥1 _::.
1
~

2
(1+y).

Again there are two cases:

y = 0 b - l .s_ x/y ~ 1 so I Y
x -vX I ~ 1 / 2(1 + 1 } 1 bl - t nd the T =v< , a n

t 11ulp 11 = "unit(s) in the last place ... "

14-8

y = 1 1 ~ x/y ~ b so 1;-}1 2 ¥(1 +b) < ¥1 + b)bl-t, and then

l q - X/Y I < ½< l + b) bl -t + ½t> l -t = ½< 2 + b) b l-t = (l + ~) u l p of q.

Note 1 + b > l + ½t> s i nee b > l .

Can these bounds be approached closely? Yes ... Here is how ...

First, the bounds upon It-fl
have the same signs and magnitudes

and x is slightly less than y,

can be approached when x-X and Y-y

The bounds

l near 2' and y is close to t-1 b ,

in case y = o, or bt in case y =

upon lq -x/yl can be approached when bt-yx/y is nearly an
1
2. To accomplish this last condition we assume first that

1.

integer pl us

y = b t-1 +m for some "small" positive integer m « bt-l _ Then we assume

x = bt-l +n for some 11small.11 non-negative n < m in case y = 0

x=bt-n forsome 11small11 non-negative n<<bt-l incase y=l.

In case y = 0 we have

x/ Y = (l + nb l - t) / (1 + mb l -t)

= l - (m-n)bl-t + (m-n)mb2-2t - (m-n)m2b3-3t + •·· < 1

To have I q - x/y I ~ ~ -t it suffices that (m-n)mb2-2t ~ ~-t; i.e.

2{m-n)m ~ bt- 2 with small relative error.

[t+l]-l
One choice worth considering is m = b 2 ,

1 [~]-1
n = m - t, , and

there are many other appropriate choices, as examples will show.

In case y = l we have

To have jq-x/yl ~ }l-t it suffices that (bm+n)mb2-2t? ~l-\ i.e.

2m(bm+n) ~ bt-l with small relative error.

1 E½J-1
Among the many possibilities is the choice m = f ,

Example. We use t = 4 digits of base b = 10; case y = 0. Suppose

X = 1013.5001, Y = 1017.4999, A= 1000.4999, B = 1006.5001. If we com-

x A) pute (-- -y B using correctly rounded 4-digit decimal arithmetic, how much

in error can the computed result be? A naive analysis would suggest an

error of about .0003 thus:

Round X to x = 1014

Y to y = 1017

A to a= 1000

B to b = 1007

corrmitting in each case an error
smaller than } ulp.

14-9

1 1 Now x/y = • 99. . . will be in error by about (2+ 2 = l) u·l p, and its rounded
1 value q = .99 ... by about 2 ulp more than that, i.e. by .00015. Simi-

larly, the rounded value r = .99 ... of a/b will be in error by about
1 l 1 3 (2 +2 +2 = '2") ulp. Their difference will be computed exactly, so we expect

naively that q-r wi 11 differ from f-~ by at most about .0003. In fact

x/y = .99705015 so q = .9971, but X/Y = .99606899;

a/b = .99304866 so r = .9930, but A/B = .99403855;
X A q - r = .0041, but v- g- = .00203044.

The error here is not just 3 ulp of .99 ... , but almost 21 ulp! [cf. twice

(1 + b) u l p in case y = O.]

On a hexadecimal machine {b = 16) we could, in a similar calculation,

get almost 33 ulp instead of the naively anticipated 3 ulp. Hex is Horrible.

On a binary machine (b = 2) we could get at worst 5 ulp instead of

14-10

the naively expected 3 ulp. Binary is Best.

The foregoing examples are not entirely persuasive, perhaps because

they compare a rigorous and achievable bound with a naively mistaken bound.

But, on reflection, the comparison will not appear unreasonable. Accuracy

is not like Virtue (which is its own reward) nor like Beauty (which is in

the eye of the beholder); rather Accuracy is like Justice {which must be

both done and~ to be done). Accuracy which cannot realistically and

economically be appraised is of disputable value. ["I am confident, though

I cannot be sure, that the number of colors needed to color any map in the

plane is 4.00000 ... "]

Of course, we could 11easily 11 have overestimated the error in the quotient

q as follows: X (= rounded X} is uncertain by 1
2 ulp, as is y

(= rounded V). so their quotient x/y is uncertain by 1 1 (2 +2)x b ulp,

where the growth factor b allows for the uncertain relative value of the

absolute uncertainty } ulp. Then rounding x/y to q introduces another

½ ulp uncertainty; the total is {b + 1) ulp, as predicted for case y = 0

above. But the same argument could be used for a product p ~ xy to show
1 that p's uncertainty is (b+ 2) ulp. This prediction is a bit large; it

is left as an exercise for the reader to show that Ip - XV I < (1 + ~) ul p

of p, with near equality possible. (And (b+})/(1 +~) = 2 - 2~6 is an

increasing function of b.) Moreover, if xy does not have to be normalized

before rounding, Ip - XV I < ½ ul p !

The point of the foregoing arguments is to show that the propagation

of error and uncertainty is more difficult to estimate realistically and

economically when b > 2. The difficulty arises when relative error has to

be "converted" to absolute error or vice-versa.

14-11

Binary Is Best, But For Whom? And Does It Matter?

Today's technology suggests that the cost of a central processor is a

relatively small fraction of the total for the system delivered without its

I/0 peripherals; that's the processor and its storage that doesn't require

human intervention (incl~des fast storage, extended core storage and possibly

disk or drum). Lumping all that together, it is clear that the cost of the

arithmetic unit is negligible. So you might as well make it right. It is

the cost of storage that is high, so you should economize there. That's where

the argument that larger bases mean better utilization of storage becomes

important.

Another aspect of today's technology is that you can gain speed by

adding a little hardware at a small cost. This may not have been true when

the 360/30 was designed, so you'd want to limit yourself to small registers

and data paths. Then hexadecimal offers the advantage that normalizations

do not have to be done as often (since 3 leading binary zeros are allowed).

The arithmetic units could be made to look faster, on the average. But on

large machines designed to do lots of floating point calculations, you must

have large registers. You cannot have fast efficient floating point arith

metic built up from tiny registers (too much microcode needs to be executed).

For large registers, shifts are not such a big chore; they don't take very

long so you don't care how many shifts are needed. On CDC 6000 machines,

a shift is obtained by a tree network in which you have as many levels as

you have bits in the count of the possible number of shifts. If you expect

to have to shift by as many as 63 places, it requires 6 levels in the shift

ing network. The first level shifts O or 1, the next O or 2, the

next O or 4 and so on. You set up gates according to the bits in the

shift count and let things percolate through the tree, which it does in 6

delay times (it only requires time to set the gates and to transmit through

the gates). Shifts are simple; it is more interesting to count h<M many.

shifts are required, which in binary is made more efficient by noting that

most shifts are small; so your counter might decode the first 6 bits to see

how many are zeros. If they are all zeros, you know you have a more compli

cated job but that doesn't happen very often.

14-12

I haven't discussed these things in the previous section because I don't

think they are important to today's technology, although they were important

in earlier times.

The case for binary is not overwhelming, as can be seen. But it does

avoid certain inconveniences in error analysis. The bulk of that incon

venience does not fall upon the users, but rather upon people who have to

provide special subroutines for those users. Most people do error analyses

of only the most superficial kind, which is generally adequate, if the number

of digits they are manipulating is rather more than twice the number of digits

needed to represent their data. If the nunber of digits in the machine is

large enough, the base of the machine is relatively unimportant. It is hard

to believe that binary or hexadecimal as a base can have transcendental

importance, since people have gotten along with decimal for at least a

millenium.

-

15. BASE CONVERSION

Arguments have arisen from misconceptions centering around what you

mean when you write down a number; do you mean something other than what

you have written down? If I write down 31415, some people say that is an

integer. If I write 31415., they say it is from a set of real numbers:

31414.5 < 31415. < 31415.5

If any nllllber from that set is acceptable, people who do binary-decimal

conversions would be much happier .

. But this leads to serious troubles. If you say 2. in FORTRAN, you1 d

15-l

be upset if somebody converted that to 1.99 •.. 9 on a binary machine; machines

have been known to do that.

The difficulty arises because you try to read too much into a simple

string of digits, so much that the string can no longer stand for itself.

This problem became acute in Pl/1, where different machines would read

the same code differently. A string might be converted in single precision,

but if you added a zero, it would be converted in double precision and trun

cated, giving different final results. The bit string representations for

31415. and 31415.O might actually be different in the machine.

The mistake arises in an innocent but misguided attempt to read more

out of a string of digits than is put there. If people had said they would

do the conversion to infinite precision (in principle) and then invoke con

ventions for packing, they would have been much better off. If you write

down a string that looks like a number, it would be consi.dered to be a precise

real number. What happens to that number when converted depends on where

you want to put it. Floating point numbers come under one set of conventions,

integers under another.

If you are doing binary-decimal conversions, it is necessary to compute

to more accuracy than is requested, in order to have something to round.

To get single precision, your table of constants will need to be to double

precision and the conversion done with double precision hardware and the

result rounded to single precision. Then the job is done correctly except

for those miserable cases that fall halfway between; in binary-decimal those

cases can be characterized.

Double precision conversion, using double precision hardware is sloppy.

You really need some extra bits around and no machine provides those.

15-2

-

