Augmenting a Programming Language
with Complex Arithmetic

William Kahan

J. W. Thomas

Report No. UCB/CSD 91/667

December 1991

Computer Science Division (EECS)
University of California
Berkeley, California 94720




CMFLX Dec. 16, 1991

Augmenting a Programming Language with Complex Arithmetic

W. Kahan
Univ. of Calif. @ Rerkeley

J. W. Thomas
ARpple Computer, Inc.

Abstract: Currently, programming languages that support COMPLEX
arithmetic as well as REAL oblige compilers to implement certain
obscure optimizations lest expressions mixing REAL with COMFLEX
variables engender superfluocus or even harmful computation. This
can be avoided if the language provides, for the compiler’'s use,
a third IMAGINARY data-type about which the programmer need know
only the name of .the language’'s imaginary unit ¢ or i or J .
And on computers conforming to IEEE 754/854, the scheme proposed
here honors complex conjugation in ways that other schemes cannot.

Current Practice

A COMPLEX number 2Z is usually rendered as a pair Z = (X, Y)
of REAL numbers X and Y . Doing so is unwise because confusing
an object with its representation usually spawns subtle nuisances.
This practice leads to extra work when COMFLEX expressions misx
with REAL 3§ & REAL R has to be coerced toc COMFLEX (R, Q)
before it can participate in complex arithmetic. Eesides wasting
time upon manipulations of O , this practice sometimes corrupts
results unnecessarily. For example, if FR#(X, Y) must first be
coerced to (R, Q)*(X, Y) before it yields ( R¥X-0O#%Y, R®Y+0%X )
instead of simply ( R¥X, R*¥Y ) , then 3I.0%#(w, 5.0) will yield
not (0, 15.0) but (0, NaN) in arithmetic conforming to IEEE
standards 734/854 for floating-point arithmetic. Similarly a
sum R + (X, Y) that should yield (R+X, Y) gets coerced instead
to ( R+X, 0+Y ) , which changes the sign of Y if it is ~0.0
and thus spoils computations of conformal maps of slitted domains.
We shall see two examples of maps spoiled this way at the end.

To some extent these nuisances can be ameliorated by precluding
premature coercions; the compiler can be instructed to comsult a
table of special formulas for mixtures of REAL with COMFLEX
expressions. This espedient does not do justice to pure imaginary
expressions Yt that must be represented as pairs (0, V) with
that annoying zero. For example, no way exists for (0z)2 to be
computed as -® instead of (-0, NaN) without wasteful tests at
run—time for zero operands in complex arithmetic operations. To
do better, we have to recognize IMAGINARY as a data-type.

One Pure IMAGINARY Constant

Consider & programming language with one REAL data-type but not
yet encumbered with a COMPLEX data-type. Our task now is to add
COMFLEX to the syntax of the language in a way that matches it
most closely to the desired traditional mathematical semantics,
even if we have to build a structure more elaborate than some
programming languages have used in the past. A measure of our
success will be the ease with which & mathematician can read and
understand & program written to do exactly what he or she intends.
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We start with the declaration
IMAGINARY 1t

which names the imaginary unit ¢ that satisfies ¥z = 2 = -1 ,
The language’'s arbiters of taste and fashion can choose any other
name, like i or J or %I , so long as it is the same for &ll
users of that language; this accord lets programs share COMPLEX
data in ASCII files without first finding out what name the data
used for ¢ . Programs that perform COMFLEX arithmetic must use
this declaration to inform the compiler that the name for : is
henceforth not to be used to name an integer nor anything else but
the imaginary unit. Without this declaration, t could stand for
a variable, or (...) & function. The best way to avoid errors
of this kind is to use ¢ only as & suffix, language permitting.

A programmer need never declare anything else to be IMAGINARY .

Variables and functions may be declared REAL L or EGOMPLEX in the
usual way. Then the language classifies expréssions as REAL,
IMAGINARY or COMFLEX according to the following rules:

REAL expressions and constants are recognized as usual. Also,
products or quotients of even numbers of IMAGINARY expressions
are REAL, as are values of certain functions like ABS(...) ,
REAL(...) and IMAG(...) that can take arguments of all three
types. The product/quotient rule will be explained further later.

Anything of the form % (REAL Expression) or (REAL Expression)*¢t
or (REAL Expression) or (REAL Expression)t ( this is best )
is IMAGINARY ; moreover, REAL 1literal constants may be either
followed by t as a suffix or multiplied by t to become of type
IMAGINARY, as are the examples ¢, te¢, 1%z , %1 , 1.0E0z .
And products or guotients of ( perhaps noc ) REAL expressions with
odd numbers of IMAGINARY exprescsions are IMAGINARY. Like REAL
numbers, IMAGINARY numbers occupy one floating-point register or
one memory cell of adequate width. Although an expression like

t* (REAL Expression) looks formally like & product, it is never
actually multiplied but merely promoted to (REAL Expression)t or
t{REAL Expression) of type IMAGINARY. It's like a cast in C .

The order of formal multiplication by ¢ should not matter; a&all
four expressions txY , Y#*z , YY) and (Y)e: amount to the same
thing, but may get there by different routes at compile time.

COMPLEX = REAL + IMAGINARY

Every COMFLEX expression is a formal sum of one REAL and one
IMAGINARY expression stored in adjacent cells. There is no need
to write X + ®Y as (X, Y) , so the latter is left available
for the language to use as a tuple or list. In other words, any
expression of type (REAL) + (IMAGINARY) is not actually added
but merely promoted to type COMFLEX. And the rules for mixing
COMFLEX with COMFLEX, REAL or IMAGINARY expressions are
expressed in that form using & decomposition like Z = Za + (Z;) 2
for every COMFLEX variable or expression 2 . ( Accidently either
Zp or Z: could vanish, leaving the COMFLEX variabple Z with
& pure imaginary or real value respectively but not turned into an
expression of IMAGINARY or REAL type: neither does the REAL
X i= 3.0 inherit the type INTEGER from its integer value.)
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Apparently, &ll complex rational arithmetic except division by a
COMFLEX number has to be built into the language’'s grammar; the
rest can be handled via procedure-calls, possibly in-line.

In what follows, R, U, X are REAL expressions or variables;
i3, v, tY are abbreviations for IMAGINARY expressions z(S)
etc. derived from products %5 etc.; and bold T, W, Z are
COMFLEX expressions with T =R+ &8, W=U+v , Z= X+ 2zY
formally. CONJ (X + tY) = X + t(-Y) 1is the complex conjiugate
operation; all rational operations must be so implemented that
they commute with it despite roundoff, as for instance does
multiplication: CONJ(W*Z) = CONJ (W) *CONJ(Z) . CONJ(X) = X for
REAL X and CONJ(zY) = z(-Y) for IMAGINARY et , of course.

Here are tables that describe a grammar for complex evaluation:

X Y Z =X + Y

Multiply
Ra VAL VEL VL VI, VI, VI, VT VI V1. ¥ ' L4 Y2, V1, VI VI VY VT VI VY. V2 VY V2. V) L "1q VT VI VI VEL VY, VR VY, V2 V2 V2. ¥ L VL V2 VL VI, VI, VT VI VI VI VI VI VY VY, VI V2 VI VY. V.V
U | R = U#*X I8 = r{uU+rY) T = (UxX) + z(U*Y)
|
Vv | 8 = (VX)) R = =VUxY T += (=V*Y) + g(V*X)
i
W=U=+ v | T &= T = T = (U%X = VxY) +
| UxX + z(V*X) ~VRY + (U*Y) T (U*Y + VxX)
Add | X Y Z =X + Y
LT VI, VI, VI, VI, VI, VY, V2 VIV ' L VT, VT, VT, VT, VI VY. VY VY. VT V2 VY. W g Vg VI VI VI, VI VI VR VI VI V2 V2. V3 L Vs Y2, VT, VI VI VI VI VL VI VI VI, V2 VY. V2. VY. V)
U [ R = U+X T 1= U + gy T = U+X + Y
|
Vv | T := X + Vv IS = (V+Y) T = X + r(V+Y)
I ,
W=UH+ V| T = U+X + v T o= U + r(V+Y) T 1= U+X + z(V+Y)

Subtraction is similar.

Division by a COMFLEX number calls appropriate
subroutines that are described below.

Divide { X Y Z =X + Y
[0 s Vo VY, VI VL VY. V2. VY VY ¥Y ' Lo YAV, VT VI VT, VT VT VY. VP V2. V2 VY V) R VR VI VI, VI VL VI VIV VI VI VY. V] R T e " s TR VI VL VY, VI VR, VI VI, VI, V2, VT, VI VT VT V2 VI ¥
u | R = X/U S = (ysu) T = (X/U) + z(Y/U)
|
Vv } IS 1= 1 (=X/V) R 1= Y/V T = (Y/V) + p(=X/\V)
|
W=uU+ v | T = X/W T = Y/W T := Z/W
|
|

Assignments and Arguments of Functions

Arn assignment like " Z = YY) " imust create a COMFPLEX value
for Z =0 + Y just as " Z = X " rmust create Z = X + Oz .
Frogramers who wish to avoid those extra zeros can do the same for
pure IMAGINARY variables as would be done for REAL ¢ retain
Just that REAL value and postpone its binding into a.. COMFLEX
context for as long as possible. This strategy is most valuable
for arguments of functions that cost much more to evaluate for
artitrary COMFLEX arguments thanm for REAL or pure IMAGINARY.

hod



CMFLX Dec. 16, 1991

For example,

exp(rY) = cos({¥Y) + sin(Yit ,
sinf{Y) = sinh(Y)1 and sinh(tY) = sin(Y)e .
cos(aY) = cosh (Y’ anrd cosh (tY) = cos(Y) N
tan(zY) = tanh(Y) and tanh{tY) = tan(Y) .
arcein(tY) = arcsinh(Y)t and arcsinh{tY) = arcein(Y)*z ,
arctan(Y) = arctanh(Y)*¢ and arctanh(eY) = arctani{¥)e .
{ No similarly simple identity relates arccos and arccosh .)

A compiler for a language that, like Fortran, possesses GENERIC
INTRINSIC functions could ideally expedite this strategy of delay
by invoking substitutions like those above automatically whenever
it recognize iMAGINARY arguments. This cannot always be easy,
s0 programmers should not demand too much help from the compiler.
No compiler can resolve ambiguities that arise when functicns are
discontinuous across =slits,  as are arcsin(Y) and arctanh(Y)

for Y2 > 1, and ¢¥x For » < O . Consequently, . identities
above for arcsinh(zY) and arctan(iY) vyield IMAGINARY values
only if Y is a constant and -1 < Y £ 1 . And only for constant

< 0 may compilers substitute yx = ;(—x)z safelys ¢y should

zignal Invalid at run—time for & REAL wvariable x < O .

Some Subtleties
A number of subtleties complicate complex arithmetic. Some come
from the plethora of infinities that can descend from division by
zero oF from deserved overflows in practically any operation; &«
fair treatment of these imfinities must be deferred to some other
QCCasion. Other subtleties concern the avoidance of undeserved
and harmful over/underflows that render unsatisfactory for complex
division (X + Y)/(U + V) , say, a traditional formula like

C (X*U + Y®V) + (Y%l - X%®V) ) / (U2 + y2 )
because its denominator canm too easily over/underflow prematurely.

The procedures presented below will avoid most undeserved over/
underfliows and also avoid the worst consequences of roundoff, a
third subtlety. A fourth concerns the sign of zercy this will be
treated well encugh below to justify the attention paid above to
the preserveation of zero’'s sign despite tradition to the contrary.

Only in complex square root will explicit attention be paid to the
gign of zero: elsewhere its correct hardling is implicit in the
ruies for arithmetic conforming toe IEEE 754/854, or impossible
irn other arithmetice. Consequently, CONJ commutes with SORT
anly for IEEE 734/854, not for other arithmetics. The same is
s for inverse functions like 1n, arctan, arctarh, arcsin, ...,
but they will not be discussed further here. The point here is
that the IMAGINARY type has been introduced not merely to save &
few arithmetic operations with zeros but more to help ensure that
every coiples operation shall cornform to &ll applicable standards.
Later, two examples will zhow how far awry simple calculations
can go if zerc’s sign ie not handled as IEEE 754/854 stipulates.

Some Subroutines
Robert Smith's  algorithm for computing

R + 28 = (X +¥)/7(U + V)
when U+ v # 0O+ 0 goes &s follows:
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I+ Ul > IVI then

F = V/U ; Simpler versions
@ = U + VP ; of this algorithm
R = (X + Y#P) /G 3 must be derived
8§ = (Y - X¥P)/0 and used in those
else cases when it is
P = U/V 3 known at compile-
Q = UxF + V 3 time that X = 0
R = (X%*P + Y)/0 ; or that Y = 0 ;
S = (Y¥F - X) /08 see table above.
end if.

On machines with relatively slow division, another algorithm that
scales the denominator U + vV before using the unsatisfactory
but simpler formula given earlier, then scales the quotient, can
run faster and just as reliably.

To compute R = ABS(X + &Y) = ¢¥( X2 + Y2 ) without severe damage
from premature over/underflow:

If IXI < IYl then swap( X, Y ) end if ;

If X=0 then R = 0 else R = ¢y((Y/X)"2 + 1)%|X| end if.

Ideally complex square root should never overflow, but perfection
is more costly than is needed for our examples. Instead we tender
an algorithm valid if (X + tY)*(1+y2)2Y  would not over/underflow.
To compute R + & = SQRT(X + tY) = (X + gY) &

R = ¢¥( (ABS(X + tY) + |[X[|)/2) $ ... over/underflow hurts here.
If R=0 then § :=

else if X > 0 then S := (Y/R)/Z

else
S = CopySign(R, Y) ;
R = (Y/S)/2

end ifs.

The function CopySign is specified for arithmetics that conforim
to IEEE 754/854 ; CopySign(R, Y) has the same magnitude as R
but the same sign bit as Y even if Y is +0 . This implements
the square root’'s discontinuity along the negative real axis in
such a way as ensures that CONJ(SERT(Z)) = SGRT(CONJ(Z)) for all
COMPLEX Z including Z < © . For example CONJ(-4 +0z) = -4 - (¢
and SERT(-4 + 07) = O + 2¢ respectively. { No such identity can
hold if the computer’'s arithmetic lacks -0 or mishandles itg in
that case CopySign(RrR, 0) might as well agree with Fortran's
SIGN(R, 0.0) = +|R] as if 0.0 had a "+ " sign by convention,
though that will roil conformal maps like the two examples below.)

The algorithms above are not accurate enough to produce Baussian
integers exactly, but they are accurate enough for our examples.

Apropos of algorithmic accuracy, it is worth noting briefly that
Z* and, for integers N > 2 s higher powers IM often computed
by repeated squaring, are usually obtained more accurately from
(X + 2¥Y)2 = (X=Y)*(X+Y) + z(X®Y + X#Y)
in two multiplications and three add/subtractions than from
(X + 2Y)2 = X2 - ¥YZ 4 g(X*Y + X#Y) '
in three multiplications and twoc add/subtractions.
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Two Examples: Eluding Flow past a Disk, and Borda's Mouthpiece
Let £(Z) = (Z - 1/2)/2 and g(W) =W — (W-1) y{W+1) .,
Do not " simplify " g(W) to W - W (-W2-1) nor to W - ¢yiW2+1)
since they behave differently. Though f(g(W)) = W for all W ,
g (f<(Z)) Z only for all 1Z1 > 1 and some {Z| = 1 ;3 otherwise
g(f(2Z)) -1/Z . Deducing where these identities hold is tricky.

As a conformal map, W = f(Z) maps the complex Z-plane twice,
once for |Z| > 1 and once for |Z] onto the complex W-
plane, mapping the unit circle (Z| to a slit along the
imaginary axis from W = -z to W = +1 . The inverse map is the
one we wish to plot; Z = g(W) maps the whole W-plane slitted

£ 1,
= 1

along W =-: to W=+ onto the outside of the Z-plane’'s
unit circle |[ZI > 1 . Vertical lines in the W-plane map to the
stream—lines of a vertical ‘“eluding" <flow around the unit circle

in the 2Z-plane. We wish to exhibit those stream-lines.

To smooth the plot near stagnation points g(+z) where g’ (+2)

is infinite, we parameterize the vertical W-lines in a way that
plots points more densely near the stagnation points than far away
from them; the real function hi(s) = (3s% -~ 1053 + 155) /8 does
this by satisfying h(-s) = —-h(s) s hits) >0 , h(1) =1 and
h*(1) = 0 . Then for any fixed real r , W :=r + th(s) traces
out a vertical straight line segment as s runs through some
interval, say -1.5 ¢ s £ 1.5, in small steps like A&s = 3/32 H
and Z = g(W) traces out a stream-line past the circle.

To plot several stream-lines, we run r through some interval,
say 0 < r £ 0.6, in several steps, say of size & = 0.05 .
For each such r we plot two stream-lines, Z := g(r + th(s)) to
the right of the circle and Z != g(-r + th(s)) to the left. The
kind of result we expect is shown in Figure 1 , and that is what
does happen if -0 is respected. But machines that lack -0 or
spoil it plot two coincident stream-lines around the right-hand

arc of the circle and none around the left, as Figure 2 shows.

Of course, some fiddling with tiny perturbations ( but not too
tiny lest they get lost in rounding errors ) can bring back the
complete circle; but why should that be necessary? As problems
get more complicated, the effects of omitting -0 get more
bizarre. Try plotting Z = 1 + W2 + Wy (W2+1) + In(W2 + Wy (W2+1))
as W runs on radial straight lines through © in the right
half-plane, including the imaginary axis. The flow, called
"Borda’s Mouthpiece", should look like Figure Z 3 but Figure 4
shows what happens without -0 nor fiddling. Can you explain it?

For more details about the phenomena in question, and for more
carefully coded procedures to compute the above complex inverse
elementary furnctions, =see " Branch Cuts for Complex Elementary
Functions, or Much Ado About the Sign of Zeroc " by W. kahan,
che 7 in The State of the Art in Numerical Analysis ed. by
Iserles & Fowell {1987), Oxfoird Univ. Press. Updated versions of
this document are relessed from time to time by its author.
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Figure 4 : Borda®s Mouthpiece, Almost
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