Filoor May 11, 1988

Machine-independent Algorithms for
floor (x) and ceil {(x)

W. Kahan
E. E. & C. 8. Dept.
Univ. of Calif. L.
Berkeley

floor{x) = the largest integer no larger than ¥
ceil {u) = —~floopr(-x) , For all real = .

- Can these functions be difficult to compute? Apparently they are

difficult erough to program that one major player in the computing
world charges a stiff fee for use of the company’'s programs. 0On a

.machine that does not conform to IEEE standard 754 or 854 for
floating—point arithmetic, or on a machine that does conform but_ﬁv-

whose compiler doesn’t, computing these functions can be an
interesting challenge. The challenge must be met without using
INTEBER arithmetic because the computer may well lack an INTEGER
data—type as wide as its widest REAL (floating-point) type. And
an assembly-language program is no good because it cannot be moved
to any other computer, with the rest of the software in which it
is embedded, by mere recompilation. The challenge must be nmet
with a program written irn a higher-level compiled language which. -
like € , lacks these intrinsic functions.

The trouble with the IEEE standards 754 and 854 is that they
require capabilities that may well be provided by hardware and vet
be inaccessible from a higher—-level language for lack of standard

-rames for those capabilities. Here is an algorithm to compute

floor{x) and ceil{x) guickly on a standard-conforming machine;

. ze@e whether you can program it in yvour favorite language:

Save the rounding-direction mode;

‘Set that mode to Round to +i0 for ceil,
Round to -0 for Ffloor ;

FRound (Convert) » to an integer value}

Festore the former rounding-direction mode.

If we must gompute Ffleoor and geil using only the rudimentary
rational operations and comparisons available in &ll higher-level
languages, and do so in a way that recompiles and runs correctly
on al! commercially significant computers, this simple problem
orows into a monster. We have to exploit properties common to all
floating-point arithmetics, repgardiess of how they are rounded;
such properties are not obvious. Here are the ones we need:

"The REAL Constant A .

All sufficiently large floating-point numbers are integers.' { In

fact, a&all sufficiently large floating—-point numbers are even

integers; taking this to the limit suggests that ® is an even
integer too, or nearly enough so for government work.) Therefore

- . each computer has its constant A = 1000...000, the smallest REAL -

-number such that every REAL x > A must be an integer too. A

varies from machine to machine, but it can be computed in a way-
to be discussed later. :

Floor ' _ May 11, 1988

A has seversl exploitable properties. First, the consecutive
.integers A, A+1, A+2, ..., 2A constitute all! the REAL numbers
_between. A and 2A inclusive, whereas A-1/2 is one of the REAL
.numbers lying between A and A-1 . Any attempt to compute a non-
integer real value § between A and 2A must encounter at least
one rounding errory if the value § is rounded just once to x ,
as might occur when & is the result of a single add operation,
then we can expect to find I -8 <1 on all commercially
significant machines. (This error bound might not be valid for
. other operations like . subtract -or multiply or divide on certain
machines, for instance on CRAYsy; fortunately, we rely only on
the accuwracy of -add () Certain +loating-point operations always
execute exactly on all commercially significant machines. If x
is REAL and lies in the interval A € % £ 2A then »x - A will be
.exact, and if 1 € » < 2A then x -1 mwmust be exact, and so
“must w+1 if x has an integer value. Coempariszon (x<y , =y
and x>y) and WNegatien (—x) are assumed exact too despite that
comparisons on CDC Cyber 17%'s have been compiled in ways that
force Z281474976710656.0 to be confused with 2B1474976710655.0
though they really are different in the machine; such & violation
seems more like & Jbug than a feature to be encouraged.

Computing +floor and ceil .
.Here is &n algorithm to compute REAL floor(x) and ceil () Afor
any REAL % 3 it uses one REAL scratch variable vy .

If % £ 0 then return Ffloor(x) = —ceil{-x) and
ceil (xn) i= ~floor{-x) .
If x > A then retwn floor(x) 1= ceil(x) = x .
T aee Now 0 2 ox <L AL
vy 1= (A + %) — A3 ... &an integer, and | vi < 1 .

If x =y then return Floor(x) = ceil{x) i=
elee if x < y then return floor(x) = y-
cell o) LAY . en FRE
else return Floor(y) =y and ceil{x) = y+1 .
End. ... The two statements marked #*¥¥ are not necessary on
++» CRAYs nor IBM 3705 because their adds are chopped.

This algorithm can be thwarted if the scratch variable y resides
in a register carrying more precisicon than REAL variables like x
for which A was determined, so make sure that x, y and A are
declared to have the widest REAL type supparted by the hardware.
I the compiler pays no attention to parentheses, separate the
statement * y i= {A +) - A " into two statements.

What should be done on a CDC Cyber if Comparison is suspect?
The following suggestions are offered not to legitimize defective
compilers but to permit programmers generally to get on with life.

A few changes suffice. Change " % > A" teo " x=-A/2 2 A2 "
"y o=y Y tp Y -0.5 = y-0,5", and insert a statement
" OIF O < x and x-0.5 4 0.5 then return floocr(x) = 0 and
' o ceil(x) =1 . "
and & comment " ... Now x =0 or 1 < x <A ." in place of
‘of the comment " ... Now O < x %« A-" These changes do no harm

to other computers except for & loss of speed and perspicuity. If
the Cyber 17x's compiler emits chopped FX instead of pseudo-
rounded KX floating—-point operations, then the two statements
marked #%% . can be omitted.

+3

Floor - , | _ May 11, 1988

What is A 7

The value of A should be determined once for each compiler on
each machine, rather than every time fleoor or ceil is invoked.
A table of values for various machines’ floating-point hardwares
is supplied below. However, a program cannot be expected to read
that table; if the program is to be cowmpletely portable at the
cost solely of recompilation, without the need for knowledgeable
intervention to supply & plethora of installation-time parameters,
<then the program must somehow compute A once and save it for
subsequent reuse. In fact, such a céomputation may be the only
way to defend against mistaken values of A supplied either by
faulty Decimal~to-Bimary conversion programs, or by people who
claim to be knowledgeable but aren’t knowledgeable enough. "-A
little knowledge is a dangsrous things; ... "

Two ways to compute A are presented here so that they may be
compared for consistencyy discrepancies call urgently for human
intervention. For instance, computers have been built whose
every REAL number is represented by its sign and the logarithm
of its magnitude; since at most five consecutive integers can be
represented exactly:as REALs on such a machine, the operations
floor and ceil become dubious. Other computer arithmetics have
been proposed (but not yet built into any North American machine
as far as I know) +that divide sach REAL word in memory into two
variable-width fields for exponent and significant digits; these
require that - A be chosen in a way that takes account of internal
registers used by the compiler but inaccessible to the programmer.
"Roth of these unusual arithmetics will generate discrepant results .
from the two programs below. Were A determined just once, as
in the program MACHAR provided by W. J. Cody and W. Waite in
their Softwmare Manual Tor the Elementary Functions . (Prentice-
Hall, 19280)}, no warning could emerge.

TABLE OF VALUES OF A FOR A FEW MACHINES

o P P A P P P P P Pl P O Aor P P Pap P O Py P P P M A D g Ty P P P P N P N N Ao e P e g

‘Machine Format _ A
CIBM 370 REAL*4 L 168 = 104B576.

REAL*8 1613 = JS0ISNPP627370494.

REAL*16 C1&27 .= 324518553658426726783156020576256
DEC VAX REAL*4 (F) 223 = BIBB&LOB.

- REAL*8 (G} 292 = AS0OISY9627370494.

" REAL*8 (D) 235 = Z4H02B797018963968.

REAL*16 (H) 2912 = 5|92295858534827628530496329220096
CDC Cyber REAL &0 bit | Zer = {407374B8355328.
CRAY REAL 44 bit 247 = {4073F748B355328.
IEEE 754 SINGLE L =23 = 3IBR608. _

DOURLE _ 232 = 4S0%599627370494.

EXTENDED 80 bit 243 11529215044606846976.
Auong the machines that have these three formats are those that use the Motorala 68881,
e.0. the SUN II1 and Apple Kacintosh, or the Intel BOB7/80287/B03B7, e. 9. IBN's
PC, XT, AT but not RT, or the ATKT WE32106, The HP Spectrum series EXTENDED format
has the same A as the DEC VAX H format. Floating-point chips made by National, AMD,
TI, FEITEK and BIT suppart at most the SINGLE and DOUBLE formats i, e.g., IBM's RT-PC =

-
t

Floor : : - ' May 11, 1988

H
[
+

"One way to compute A = 1000,...000 ig to compute the arithmetic’s
:radix B = 10 firety +this means twe-+ on binary machines, elght
on octal, ten on decimal and sixteen on hexadecimal machines.
Then A = BP~' where P is the number of significant PB-digits
carried. The algorithm coffered here is derived from one of Mike
Malcolm's (¢ Comm, ACM v, 15, 1972) but modified in a way that
has worked, in the author’'s PARANOIA program, on a wide range
of machines except perhaps only the CDC Cyber 2ux series (with
&4-bit words) and its ETA cousins with certain compilers.

One .= REAL{1) § Two = One + One ;3 IZero = Une - One ;.
Mone .= -One j;
If { Dne=Zeroc or One*xlne+Mones#Zero or One-Two#Mone)} then

print "Now who's parancid?" apd CGuit.

w o= One 3
Do ¢ wi=w+wi u =] {({wtOne) ~w) ~ One |
> until w + Mone > Zero .
... Now w=2¢ ig just big enough that [{({w+l)-w)=1| >1 .
u = One 3 _
Po { B i= (w + u}) —w s u = u +u
> until R * Zero i wes Now B is the Radix. ,
»IF B < Two then print "A logarithmic machine!" and Guit.
w = One 3 .
Do € A= w ;i wi=Béw § u = (w+ One) — w
}ountil uw # One § ... Now A is known.

The second way to compute A., and to corroborate the first, is
valso drawn-from the author’s FARANGIA program described in BYTE
10 #2 (Feb. 1985, pp. 223-23%) by R. Karpinski. The idea is to
find out fast how 1.0 differs from the neut larger REAL number;
that difference should be 1/A unless the widths of the fields of

a floating-point number vary with its magnitude.

Four != Two + Two § Three = Two + One 3 HexD = Four*Fowr j
v = Four/Three — One i vee VvV is very near 1/3
‘wor= l {{v+v) -~ One) + v | 3 ene W = 3Z¥lerror in 473 .
If w = Zera then _

print "Ternary arithmetic? Not in the USA !" and Luit.
Do £ e (= w 31 w = {((HexD*whw + W/ Two) + One) - One

3 until (w e o w=1I12Zero) 3 ... New e = 1/A ..

If Axe # One then print "A may be wrong!" and Stop.

Both algorithms above can be ruined by compilers that disregard
parentheses; for such compilers, break statements in such & way
as will force the desired order of evaluation. Both algorithms
are designed to determine A correctly even if intermediate
expressions are evaluated in registers with more precision than
REAL variables have in memory, but then only if parentheses are
honored by the compiler.

Epilogue

The problem of computing Ffloor and ceil in a completely portable
way without reliance upon someohe else’'s proprietary software nor
-upon mandally inserted constants nor upon unreliable compilers nor
upon idigsyncratic hardware is not & probhlem invented just for the
classroom. The problem was presented to the author by a colleague
(Frof. John Ousterhout) in all sericusness. But it is still an

4

Floor ' May 11, 1988

unreasonable problem; applications preogrammers should not have to
solve it aver and over again. We ought to be able to depend upon
a library of mathematical functions supplied with each machine by
its maker and used consistently by &ll compilers of all languages -
for that machine. The SANE -Standard Apple Numerical Environment
described in Standard Apple Numeric Environment for All Macintosh
~and Apple Il Computers (Addison—-Wesley, 1986, with a new
edition to appear imnmenently) is a good example of what we all
need. The DEC VAX VMS Fortran library would be another good
example were it freely available to users of UNIX on VAXes too.
Such & library would supply computer users with a rich collection
of mathematical functions that would, ideally, be accessible in
-all languages and available on all computers, though the precise
values of those functions might have to vary a little from machine
to machine even if all their arithmetics conformed to a standard
like 1IEEE 754 . Foar a readable description of that standard see
A Froposed Radix- and Word-length-independent Standard for S
.Floating-point Arithmetic* by W. J. Cody et al. in the IEEE
magazine NICRO for Aug. 1984, pp. B&~100. An earlier paper by
the author and J. T. Coonen, "The Near Orthogonality of Syntax,
Semantics, and Diagnostics in Numerical Programming Environments"
in THE RELATIONEHIP BETHEEN NUMERICAL COMPUTATION AND PROGRANMING
LANGUAGESR edited by J. K. Reid (North-Holland, 19B2), advocated
a computing environment throughout which a universal library of
mathematical functions could more easily be disseminated despite
persistent variance in the semantics of computer arithmetic.

To reach the desired state of affairs we need a standard for the
names and specifications for the functions in that library. Silly
naming inconsistencies among languages will have to persist just
far the sake of compatibility with prior practice; an example is-
BABIC s use of GOR for what everyone else calls SART (yx))
while Fascal uses SBR for %2 , the inverse of SERT. Such a
standard should not be left to language enthusiasts alone because -
they will give too much weight to implementation. problems that
they are ill equipped to handle, too little weight to the needs
of applications programmers. For similar reasons, & standard for
mathematical functions cannot be left in the hands of most vendors
of computers even though they may ultimately have to implement it;
they would incline too often to enshrine their own past practices
in the standard. For example IEEE 754/8354 recommends & function
CopySign(x,y) that transfers the sign of y to x, differing from
Fortran's intrinsic function SIGN({x,y) only in its treatment of
the sign of zero; but Apple’'s SANE has CopySign{y,%) with its
arguments reversed! (The man responsible for that choice wishes
now that he had chosen SignCopy({y,x} instead. } Thus do mishaps
persist over many years, condoned by compatibility considerations
for lack of a stronger incentive to change. The needed incentive
could be supplied by & well drafted standard, but only if it is
tramed preponderantly by producers and users of portable numerical
software.

Now, who 5hhil bell the cat?
Acknowl edgments
Much of the author’'s work along these lines has been supported by

a loeng-running grant from the U. 8. Office of Naval.Research.

o
pu |

1 ° LAMEDA.BAS , a BAD

IC program to determine the least REAL number

2 * Lambda such that every REAL x »>= Lambda must be integer-valued.

10 £LS: One = 1 3 Two = One+lne 3 Zero = One-0ne 1 Mone = ~One
20 IF {(ne:Zero and Dne*0One+Mone=Zero and One-Two=Mone) then 100
40 ~ print "Now who's parancid?" : §TOP

100 w = One

111 W= wkw ¢ U = abs(((w+One) — w) — Cne)

120 if u+tone < Zero then 111

200 u = DOne

222 B o= {(WHil) = w 3 U = v+u @ if not(R > Zero) then 222

330 I+ B < Two then print "A log. machine with B = ";B : G§TOP

460 print "Radix B = "B

SO0 w = One

555 Lambda = w ¢ w = B¥w 1 u = {w+Dne) - w : if u=0One then 555

&HO0 print “lLLambda = "; Lambds

7S50 Four = Two+Two @ Three = Two+One : HexD = Four*Four

760 v = Four/Three — One : w = abs{ {({(v+v) - One) + v)

780 I+ w=Zero then print "Ternary Arithmetic?" : &TOF

833 e = W w = {{HexD#ww + w/Two) + One) - One

a70 i$4 Zeroiw and wie then 888

F70 1f Lambda®e > One then print "Lambda may be wrong!";

280 print * e = ":3& 31 end

All these Lambhda's are

IBM FPC BASICA (in ROM)

Single Frecision:

Double Frecision:

Borland Turbo-RASIC on

Hewlett—-Fackard HPF 71R

The last two Lambda’'s
expressions regardless

RESULTE

P Por N Pop Bup P N

just what programs FLOOR and CEIL require.

Radin B = 2

Lambda = BI88608 een = 2723
e = 1.192093&8-07

Ok

Radix B = 2 _ ’
Lambda = 3.602879701896397D+16 ... = 275
e = 2.775557561562891D-17

Lh

Ok

an IBM FC ‘using the iB0O87

Radix B = 2
L.ambda = ?.223:720\68u477éE+018 ces = 2763
@ = 1.084202172485504E-019

calculator in both ordinary and SHORT precisions:

Radix B = 14
Lambda = 100000000000 ves = 10711
e = O,00000000001

reflect whatever precision is used to evaluate
of whether variables with that precision may be

declared by the programmer.

