Math 129A 1-21-72 - | |
Prof, Xahan (})

. We examine three machines to see how they represent numbers
and do arithmetic:

TH® IBM 650 number representation is as follows: there is a

sign bit containing either a + or a - followed by a string of

. ten decimal digits. =

zﬂ.n‘r- frg/ts = -
mg‘g*:@ .8619 7

Such a stfing_can represenﬁ either an iﬁstructiop or a number,

and its~degoding deﬁends upon its intended use.' If a floating
point number, it is decoded as Follows: from the two leading
‘digits subtract 50 to obtain a number calléd e. 10% is prefaced
by the sign and followed by a point ahd‘ﬁhe_last 8 digité label-
ed £, The number is interpreted as T 10x.f, where 0%.f £.99999999
Bxample: +38 64213907 is interpreted as = +10°°7°0 x 64213007
The'following technicalitieé-arise: the:répresentation'ﬁﬁ zero

is notlpnique; gince any number whose last 8 digits are zerosr

&

wiliwb; zero. , e define zero to have all 10 digits = 0. Then

e = =50, But stiil you ﬁave the pfohlem of having both a +0 and

a ;0.‘ This occurs ih'all méchines which have the properﬁy'that

if x is represeﬁted then so is 4#;' Siﬁilarly, to insure uﬁique-
ness of non-zero numbers, ﬁhé-first‘digif of the last 8 is required
to lie between land 9 inclusi&e. For such_numbers; called nofm—
'alized;numbers, we have .100000005A5$;99999999.'

- Let us now look at some examples of héw“arifhmetié is done -

on the IBM 650, Suppose we want to add two'pumbers, say
022.
20

X .6413
% .4096

+72 6413 . = 41
+70 4096 = +10

‘'where we use four digits for‘brevity. ‘We shift the decimal
:point to equaiize the exponents and add. Any digits in the

machine which fall out of a register are lost.



+72 6413 +10%2 x .6413 the error here is
22 ' not toco bad-

+72 004098 +10%% x .004096

+72 6453 +10%2 x ,645396
Now suppose we try the sﬁbtraction

+51 1000

= 450 9999

Rewriting and subtracting we have

+51 1000 1.000
-51 0999 - 0999
+51 0001 L0001

Finally the answer is normalized t0'+48_100ﬂ,.which corresponds
to an answer of 10”3'.whereas we can see.from'thé abbve_dalcu—
lation on the right that the anSWer'is 10“4; We are off by an
order of mégnitudel -‘e-the f rule that tﬁe fortran Statement-

X = A¥B is'repreéented iﬁ the machine by x = {a¥b) (1+%) is not
valld unless we allow values of § up to 9, whereas for 4 digit
arithmetic we would like and expect [¥]€ 10 3. %Thﬁs the IBM 650
is not the kind of machlne we llke to do arithmetic on,

How many floating p01nt numbers on the 6507 2x102x10 (l-,o)+l

Numbers on the IBM 360: Again we have a sign_bit followed this

time by 7 bits labeled ¢ (characteristic) and 6'£of‘l4 or 28)

hexadecimal digits labeled f. . 78rs || @ Hex Drerrs
C ' +

To decode'the-number write the sign followéd by 16% = 16c-6%f

a hexadecimal point, and the dlglts £. The number is then

interpreted as T 16°% x £



(3)

Why subtract something from the characteristic to get e :
as we have done? ©Not only to allow negati?e exponents, but
also to make:possible comparisons of normalized numbers ﬁithout
decdding them. On the 360 for normalized numbers .100...,%.f =% ,FFF...
where F is the hex diéit for 15, The problem of -0 occurs;inw
frequently on the .360, .and. the rule X‘_"A"B > ¥E (A=6)((+F)
_is‘valid on this machine.‘,How many fleating‘point nunbers are
possible on the 3607 The number_is 2x27216§(l-7é)%1.for the 6
“hex dlglt numbers. The'firsf 2 is due to sign' there are 2'7
possible characterlst1c5° there are 166 poselble arrangements far

_ I :
_f’hmﬂ:;; of them have leading zeros: finally we add 1 for zero.

CDC_6000 & 7000 SERIES: 1's complement binary integers.

We are given 60 binary bits the first of which determines the
sign of the integer. If the leading‘digit is‘a'O,

1) erte + siaN
2) follow the j by the magnltude of the remaining blts

If the leadlng digit is l, write '-', complement the whole word
and go to (2) above.
For floatlng point numbers the first 11 bits after the sign

bit serves as the character:.stlc. ? it bts 48 bits

Decoding proceeds as follows: 1) If the sign bit is 0 write '+'}
otherwise writel';' and complement the wﬁele‘word. (2).Cpmple¥
ment the first bi£ of;the-cheraeteristic;:call the 11 bit result,
interpreted as a l's eomplement binary integer, e. (3) If e=»0.
‘writerhﬂﬂ megning'indefinite epd stop. If e = 210—1, write oQ
and stop. ({4) interpret the last 48 bits as a bihary inﬁeger,

‘ _ ‘ .
not a 1l's complement binary integer, IZ0. ¢ we have 2% x 1.



(4)

ExdéptidnS' If e = (2 0— 1), then the value is treated like

zerc for mult1p1y/d1v1de operatlons. The normal zero has e =

-{2 lo~~1) and I=0, Normallzed non~-zewe numbers have 2 7 5248"1
to guarantee uniqueness of rep:esentatlon.
. _. _ 4
How many numbers? for add/subtract/ﬁ%%%?? we have 2x(211—2)x2 7+l
for mult/div we have 2x(?11~3) ?47 1

As for the IBM 650, the rule of carrespondence between the
fortran statement X=A-B and the internal representatlon.2~(Wfik7'f)
is invalid, but this time for a different reasom, Consider the
example we had before in 4 diqit arithmetié; After thé right

shift to equalize the exponents, and the sﬁbtraction, the reg-

isters appéar as follows: _ g0 0 | ( ~ " Fhosy  2CHOS orent
, A LL €00 reslly fhre s P
B [049 2|9

x poooli |

The subtraction is'perférmed'properly to oBtain the contents of
double régister ¥X. Notice that the register B has been extended
to accohodate-the shifted digiﬁs, and-fﬂe'sugtraction has been
performed as iffthe'numbér in régisfer”A were féllowed by.zeros.
Unfortunately when we now ask for thé.vélue of X, the right half
of doﬁble register X is thrown.away,land thelcontents of the left
half are normalizéd, in this case to zerb.-'Thé new compiiér |
which will be‘avallabie for us will‘perfﬁrm'the normalization‘=
on the whole double register X, thus preserving in many’ cases
importént digits, |

Why does the old compiler oh~the CDC 6400‘give‘1.000 -
.9999 & 0 7?7 The maching Qas designed-with the following ideas
in mind. - Suppose you write the fortran statement'A = B—C; Since’

the values b and ¢ stored in cells B and C are not normally



)

known precisely, we should not complain if they are altered by
less than a unit in their last places, so we cannoﬁ complain if
the computed value in A turns out to be & = 4(/+@) —C(/+y)

for some very tiny relative rounding errors f &nd T . For exém?le

if b=1,000 take #&¢ £ = -,0001
| c=.9999 take ¥ =0 .
~Then a = 1.000(1-.0001) - .9999(1) = 0 exactly! Thus we @an say

"1.000 - .9999 = 0 to 4 significant figures," If we adopt the
foregoing view, which seems to be more appropriate for used car
salesmen and North Beach touts than for scientists, we deserve

to get zepo for an answer,

sveve GardEeq



