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Abstract: :

This is a case study of attempts to program the computation of a-

continued fraction and its first derivative in a way that avoids

spurious behavior caused by roundoff, over/underflow and, most

important, division by zero. For a machine that does not merely

abort computation but continues in a reasonable way after division
by zero, as do machines that meet IEEE standards 754 and 834 for

floating—-point arithmetic, such programs are straightforward. On
machines that offer a feature that I call' "Presubstitution" such
programs are even pleasant. But programming continued fractions

on other machines is a chore I prefer to leave to someone else.

Introduction:
A typical continued fraction is

cftix) = 4 - 3 ( 4 div.)

Xx =2 -1 _ . :

Xx =7+ 10 _____
% =2 -2 -
. %= 3,
for which an algebraically equivalent ratio of polynemials is

rp(x)  i= 22 = x(751 -~ x{324_=_x159_-_4x))) . (7 mul.,

112 — x (191 - x(72 — x(14 — %)) 1 div. )

Both expressions represent the same rational function, one whose
graph is smooth and unexceptional:
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Although- rpix) = cf(x) as rational functions go, they are not

computationally equivalent ways to compute that function. For
instance, ' '

rp(ly) = 7., rpf2y = 4 , Crp(3y = 8/5 , rp(4) = 5/2 3

but the corresponding values of cfi{x) encounter divisions by
zero that stop many computers. However, provided the computer
conforms to IEEE 734 or 854, in which case

+(nonzerol} /0 = +m , ®w + (finite) = o , {(finite}/m = 0 ,
computed values of cfi{x) and rpix) agree at those arguments
toc. On the other hand, if x| is so big that x* must
averflow, then the computed value of cfix}) = cf{)» = 4 but
rpi{x) encounters (overflow)/{(overflow) , which yields something

else. And at arguments x  between 1.4 and 2.4  the formula
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rpi{x? suffers from roundoff usually much worse than cfix) . For
instance, typical values obtained far rpix) and cfi(x) at a few
values x are tabulated below, as computed on a calculator. that
rounds to 10 sig. dec.; together with a value computed correctly:

EI 1. 6063193 - 1.959 2.101010101 2.3263 2.4005

"rp':  8.792378651 4.823132981 2.304822296 7766166480 7407074217
"cf':  B.752378523 4.823133133  2.304B22346 (7966165760 . 7407073780
f 2 8.732378524 4,.823133133  2,304B22344 (7946165794 | L 7407073784

That is why cfi(x) is preferable to rpix) 1if division is not
too much slower than multiplication and if division by zero
produces something huge enough instead pf stopping computation.

Many other ways to compute this function are worth copsidering.
For instance,

FP(x} = 4 = 3I(x=2) ((Xx-5)Z + 4)/ ({(x=5)2 + 3) (x=2)2 + x)
entails less work (9 mul., 1 div. ) and much less trouble with' . .
roundoff, and a little less trpouble with overflow on those

machines that overflow to a huge number instead of just stopping.
But if the coefficients of cfix}) were arbitrary flpating-point
numbers instead of simply integers like 4, 3, 2, 1, 7, ... then
the resulting coefficients of rpi{x) , regardless of which form
be chosen, would almost certainly be contaminated by roundoff to
an extent difficult to ascertain. Ideally we should prefer to
compute c¢f(x) as it stands, but that may be impractical on a
machine that balks at division by zero. What should we do then?

There is another trick to consider. Choose a tiny positive number
£ so small that 1.0 + ¢ rounds to 1.0 when computed in the
same floating-point arithmetic as is being used to compute cfix),
but not so small that 10/:& overflows. Then very slightly alter
the expression for cf(x) thus:

cf (x) = 4 - 3

O
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{(x—3) + ¢ .
Both versions of cf(x) vyield exactly the same computed values
except that division by zero never happens to the latter version!
In general, if cfi{x) were more complicated, with coefficients
that ran over a very wide range, the values to use for ¢ might
be difficult even for a skilled error-analyst to determine. This
is not a trick that typical programmers might be expected to find.

A Continued Fraction and its Derivative: .
How should programmers generally deal with continued fractions and
similar computations in which divisions by zero that might occur
would be harmless if handled properly? Consider the general
"Jacobi" continued fraction, which takes the form

(=) = as + bg ( all by # 0 )

. ¥ + an -
Continued fractions like this figure in formulas for various
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transcendental functions of interest to mathematical physicists
and statisticiams, For instance, +for big vy >> 0 and x = y=2 ,

S exp (-t=2/2) dt = vy exp(—x/2)

A Jacobi fraction can,be ccmputed by a very simple recurrence;

f 1= awm H ) -
for § = N-1 to O step -1 do f !=.a; + by/(x+ f) 3
after which f = f(x) provided division by zero, if it occurs,

produces a sufficiently huge quotient . ( like o ) rather than
stop the machine. Any expedient introduced here to preclude
division by zero or to handle it some other way would encumber
that simple recurrence- -intolerably. But ® is no panacea; it
cannot cure all divisiens by zero equally easily.  Let us turn to
a more realistic illustration of the role played by & .

Both f o= £ (x) and its first derivative £ o= £ (x) = df {x)/du
are generated simultaneously by the recurrence

£ 0= 0 5 4 1= an - :
for 3} = N~1 to O step -1 do -
: { d = x + f 3
g = by/d ;
f' .= —Ul+frq/d
f = ay; +a ) ; :
provided the divisor d never vanishes. But if d = 0 at some
pass around the loop, follpwed by g = +f =0 and + = o , the
next pass around the loop will put d = , q= 0 and f = a,
correctly, but ' = o0 or /00 , which turns into NaN (Not a

Number) when arithmetic conforms to IEEE 754 or 854. This NaN-
is not the correct value for F' . 0One way to get ' correctly
is to use the e-tricksy replace the statement. g i=x + £ 3"
by "d = {x+f) + £ 3" Ffor some suitably tiny positive £  that
has to be computed differently argund each pess of the loop. But
this is an expedient for error-analysts, not for programmers who
seek algebraic and cambinatorial cures for programming maladies.
fhlas, all other recurrences known to cope with division-by-zero
and spurious over /underflow correctly seem obliged to in¢lude some
kind of test-and-branch.  The simplest such scheme I know is
this: :
Choose a positive & so tiny that 1.0-¥s rounds to 1.0 i
£ =03 f = an ' '
for 3 = N-1 to O step -1 do
=x ot f d = (1+f") + ¢ 3
= b,u/d g
d’'l = 0 then + = p
else ' = ~(grsdid ;
f 1= a;,+ g p = bydrsby ¥ .
Complicated though it may appear, this recurrence is far simpler
than the proof that it is correct, - which invelves taking limits
as d —>» 0 and a verification that d # 0 . The last candition
is assured by a simple version of the e-trick, which prevents
O/0 or Ok in examples like the following at x = 0

.
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On a vectaorized computer like the CRAYs the last recurrence is
applicable to vectors x, ¥y ¥, d, d, g4 and p elementwise
provided the conditional statement "I I =0, " is
replaced by a vectorized conditional assignment

"F = if |d'l =m then p else  -{(gq/d)d j; "
that exploits the computer’'s ability to select a vector’'s elements
in accordance with a bit—mask derived from the boolean expression
"ia't = 0" . On a heavily pipelined computer with multiple
arithmetic units the operations in the recurrence will overlap to
an extent indicated partially by the way the statements have been
written. But if division by zero is disallowed, or if division
is too much slower than multiplication, all programs I know to
calculate 4 and f' robustly seem obliged either to branch in
ways that slow down many of to—day’ s fastest computers,  or else
to exploit extremely devious perturbations contrived to vanish
amongst the rounding errors.

Presubstitution: : :

In the past, programming languages have required that exceptions
like Overflow and Division-by—-Zero be either precluded by apt
tests and branches, or else handled by "Error—Handlers" invoked
perhaps via special statements like

"ON ERROR GOTOD <?tine>" or "ON ERRDOR GOSUB <tsfine>" in BASIC,

"ON <Error-Condition?> <Action to be taken>" in PL-I .
These statements require a  Precise Interrupt 1if their etrror-
handling actions are to be followed by resumption of the program
from the point where the Error-Condition was detected. But a
Precise Interrupt can be expensive to implement in fast computers
that achieve part of their speed by overlapping instructions, by
pipelining them, or by wvectorizing. The trouble is that several
instructions may be executing simultaneously when one of them
signals an exception, and then the computer will have to undo
whatever was done by instructions that were issued after the one
that signalled but before the signal was received. 0Otherwise some
variables referenced by the Actien te be taken might have changed
since the exceptional instruction was issued. Much extra hardware
may be needed to remember what was done so it can be undone. Even
if archtectural ingenuity provides precise interrupts neatly with
little extra hardware, as appears to have been done for the MIPS
R2000, compile-time ‘“optimizations" may have so rearranged the
operations’ order that some exceptions cannot be located precisely
relative to the source code, thus vitiating ON ... statements.

A different approach provides most of the benefits of those kinds
of error—~handling statements at a small fraction of their cost.
The essential insight is the realization that, if an exceptional
operation can be so redefined by the Actien to be taken as would
Justify resuming execution afterwards, then mathematicians might
well call the exception a Removable Singularity. Examples are ...
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Dperation Type Example

Add/Subtract =0 cati{x) - 1/% —» 0O as Xx —» 0 ,
Multiply 10} 814 x cot(x) ~> 1 as x —>» 0 ,
Divide Q/0 x/sin (2x) — 1/2 as X —> 0 ,

/00 ®/7(3Ix+1) > 1/3 as X —> 0.

IEEE Standards 734 and 8354 prescribe NaN  as the defaulil result
of such operations because any other value, prescribed without
knowledge of the exceptional circumstances, would cause confusion
more often than help; that is why IEEE standards eschew APL's
assignment 0/0 = 1 . " 0Only the programmer’'s special Action to be
taken can remove the singularity correctly.

An  ON <Condition> <Action> statement is not always preferable to
a well-placed test-and-branch. To choose between them programmers
must weigh not only the probability of the Condition and the
relative complexity of the Action but also the extent to which

the OM ... statement may reguire inhibition of all concurrency
that would interfere with a precise interrupt at any operation the
hardware thinks might generate the Condition. An explicit test-

and-branch encumbers only those ( presumably fewer )} operations
that the programmer thinks might encounter the Condition.

When the programmer intends that execution resume after a very

simple Action, the inbibitiomn of concurrency required to achieve
precise interrupts is too high a price to pay. Another mechanism
can be much cheaper; consider a statement of the form

ON <Condition> PRESUBSTITUTE <Value>
that causes any Condition drawn from the set

4w, oxm , o/0 W/ )
to deliver Value instead of NaN . The hardware reguired to
implement this statement entails only presettable registers in
lieu of the read-only registers from which a NMaN would be drawn.
The programmer has to precompute Value before initiating any
operation that might encounter the Condition. And the principle
that requires anything written to be readable requires a statement

_ <Variable> = VALUE PRESUBSTITUTED ON <Condition>

to be available too. Let's see how well this scheme would handle
a simple example firsts ' '

Define B(x) = sin(x)}/x with the undérstanding that S(0) = 1 ,
and suppose we wish to compute the vector w = S(v) elementwise.
A very simple program would suffice:

Savelt = VALUE PRESUBSTITUTED ON  "O/O"

DN "0/0" PREBUBSTITUTE 1.0 3 _

FOR j§ IN <1..DIM(V)} DO w,; = sinlv,)/v, 1IN PARALLEL ;

oM "O/0"  PRESUBSTITUTE Savelt .
Mo tests; no branches; no precise interrupts; no bubbles in
pipes; no synchronization operation in the loop. Presubstitution
acts like a special divide instruction to send the value 1.0 to
the divider in anticipation of invalid divides; this value will
be used only if some divisor v, turns out to he 0O .

How well would'presubstitution'handle the continued fractien +(x)
and its derivative f'(x) ? Compare earlier programs with this
ones



crF - WORK . IN PROGRESS March 17, 1987

Savelt () := values presubstituted on "0/0" or "W/ or "OXm" ;
On "0O/0" or "w/w" presubstitute o j
=0 ; f = am 3
faor j = N-1 to 0 step -1 do
{ d=x+Ff 3 o =1+ £ 3

q i= by/d ; |

f' = —(d'/d)g 3 £ .= azy + g ;

an "0X®* presubstitute by-.d/b; 3 ;

on "0/0" or "/w" or "Oxm" presubstitute Savelt() .
No tests; no branches; no € . This program works well i+ all
variables are scalars and arithmetic is overlapped or concurrent.

But if all unsubscripted variables were vectors interpreted
elementwise, then the presubstitution operation would have to be
interpreted elementwise too, which is impractical on a machine
with the CRAY's architecture where operations upan vector
registers are performed in a few pipelined arithmetic elements.
On such a machine the most practical program would resemble the
earlier one with a vectorized conditional assignment statement.
S0 prescubstitution is np panacea for exceptions on vectorized
machines. It is a compromise between expensive hardware that
interrupts precisely to handle exceptions and cheap hardware that
ignores them, between unfettered software ‘allowed to do anything
in response tao exceptions and software in a straitjacket.

Presubstitution has been found helpful also for handling some
other classes of exceptions, namely
Over/underflom, to a presubstituted magnitude with its sign
inherited from the operation’s true result;
Division by Zero, or any operation that would produce o
‘ exactly from finite operands, to a finite
presubstituted magnitude with inherited sign.

Dereferencing a Null Pointer, to a presubst1tuted entity.

Frement Qutside an Array (or other data structure), to a
presubstituted entity.

Uninitiatired variable, to a presubstituted entlty

The last three exceptions’ presubstituted entities can be NalNs
for debugging, or zeros for compatibility with certain higher-
level language conventions. Presubstituting instead of aborting
can simplify beginnings and ends of loops, especially in matrix
functions and in programs that search through data structures. On
heavily pipelined machines, presubstitution allows compilers to
aoverlap floating-point operations and anticipatory fetches of data
without the risk that fetching data destined to be discarded might
abart computation unnecessarily on an invalid fetch.

Retrospective Diagnostics:

Presubstitution brings to the fore a dilemma inherent in any
policy for handling exceptions. 0n the one hand, a policy that
forces execution to be aborted for every exception in some class
{say Division-by-Zera) can be proved <{(by means lying beyond this
paper’'s scope!) to preclude successful searches under circumstances
sometimes unavoidable. 0On the other hand, always to continue
execution with, say, presubstitution for every exception is a
risky policy too; programs transported from a machine that always
stops to & machine that always continues may malfunction terribly.
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Passing this dilemma down to applications praogrammers, forcing
them to choose one policy or the other in subprograms that cannot
"see the whole picture," is no resolution; they will choose to
stop rather than be blamed for allowing their programs to continue
on to a calamity. '

A& reasonable resolution of the dilemma comes from what 1 have
called Retrospective Diagnostics. These take automatic note

of the occurrence of at least one exception in each class, both
by flags accessible to the program that raised the exception, and
by other means addressed afterwards to the users of that program.
Further discussion would lead beyond the intended scope of this
paper; but the issue had to be mentioned first to warn readers
that exceptions cannot be handled by presubstitution alone, and
second to reassure readers that related problems are tractable.
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Here are two ways to express the same rational function:

: . 3
cf(x) = 4 - -
1
x - 2 -
: _ 10
x -7+ T
2
x - 2 -
R x - 3 ,
622 ~ % (751 - x(324 - x (59 - 4'x)))
rp(x) := . —
112 - x (151 - x (72 - x (14 - x)))
9 - _
| .f"!f \
pe R
o
*_“_w__d;_;,-r_*"’ '
cf(x),Tp(x) N \
\ ...-'""""_-F_'_#_P—_’J—"-
7
0
-1 : : o x : 5

The coincidence of thé graphs obtained by plotting both expressions
confirms that they represent the same function, though they treat
Roundoff, Overflow and Division-by-Zero differently.

For example,

ef(1) = cf(2) = - ef(3) =« ef(4) =
singularity ' { singularity . | singularity |. singularity

rp(l) = 7 rp(2) = 4 rp(3) = 1.6 rp(4) = 2.5
Division-by-Zero cannot happen to rp(x) ; and it would be harmless

in cf(x) too if the « supplied by the hardware ( it has an INTEL
a0x87 +that conforms to IEEE standard 754 ) were used as its designers
_intended. For instance, computing c¢f(3) would then produce correctly

2/(x=3) = w , X-2~0 = -® 10/0 = 0 , x-7-0= -4,
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eps (= 0.6  TTmmmomew
3
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1
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x -7+ .
2
X - 2 -
' x - 3
622 - x (751 - x°(324 - x (59 - 4°x)))
rp(x) := B -
112 - %2 (151 - x° (72 - % (14 - x)))
U := 1.60831924 ' X := U,U + eps ..U + 360 eps -
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+ F7 +t + t + w1
+1 + + +
I
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The nearly smooth”graph ----—" belongs to cf(x) ; +the ragged graph of
+ ’s belongs to rp(x) . Every point on each graph has been plotted to

show not only how much worse roundoff affects rp(x) than cf(x) but
alsco that roundoff is not nearly so random as some people think.

The next example illustrates that c¢f(x) is invulnerable to Overflow
but rp(x) is not '

F | . .
cf Llow.l = 4 | ' : ll'p Lloﬂl Z m m

correctly. - : . “loverflow
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The next graphs are included just to show that the previous one was not a
fluke. They use different ranges of values for x .

U := 2.4006817 ' | X =0, + 2 eps .;U +-800‘ep$
0.740707 o : : B L .

Cef(X),rp(X)

0.740707 . . ,
2.40066 - X 2.400868
V := 2 + 240 eps . e(x) = ef(x) - rp(x)
The next graph shows how _ _ cf(x) - cf(V¥)
roundoff obscures rp{x) , d(x) :=
but net cf(x) , by about 10

24 times as much as that function changes when x changes by
one unit in its last place for values x slightly bigger than 2 ;
for most other values of x roundoff in rp is much worse than this.

U := 2 + 2 eps X = 0,0+ 2 'eps ..U + 480 eps .
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