RATIONAL ARITHMETIC in FLOATING-POINT

W. ¥ahan
Math. Dept., and E. E. % Computer Science Dept.
University of California at Berkeley
Sept. 20, 1986

Abstract: Calculating M/N 1= A/B + €/D in lowest terms, given
the intesgers A, B, €C and D, is a task taught in Elementary
grhool sg and it is an easy exercise in Computer Frogramming
too provided the given integers must be less than half as wide
ag the widest integers that can be handled conveniently by the
computer’'s hardware or by its programming language. But that
pragram becomess much more complicated (and slower) 1if it is
naively expected to perform correctly whenever all six of our
integers A4, B, C, D, M and N are allowed to grow almost as
wide as those widest convenient integers. This simple task
illustrates why the art of praogramming entails sometimes a
delicate balance betwesn, on the one hand, the simplicity
and aesthetic appeal of the specifications and, on the other
hand, the complexity and efficiency of the implementation.

Introduction: o
The obvious way to calculate

M/ = A/B + C/D in lowest terms
ig to first calculate ‘ :

Mk = A%D + BR(and Nx&k = B*D
and then divide them by their Greatest Common Divisor

& = god Mk, N¥R) .
But the obvious way is no way to calculate
Il /s 1897 51872 = 234 36799 / 123456 -~ 9882 ?7IR6 / 988291
on a calculator that carries enly ten significant decimals
because first , - :
ek = 234 6799 * 988291 -~ 1274586 * 9882 97396

= 2201 12433 403509 - 12201 1243F 20376
= 19933

'énd .
N#k = 123456 * 988291 = 2 20104 534696
would have to be calculated in order to reveal

k= godd19933, 12 20104 SIé6R6) = 443 .
On that calculator, the two fifteen-digit products would both
round to the same value (12201 12437 00000) to ten significant

digits, vielding zero for A% 1 and N*& would get rounded of+
too. However, because the desired final resulis =31 and

N = 1897 51872 can be held exactly in that calculator, a way to
compute them exactly ought to exist. An algorithm that does so
without merely simulating arithmetic to at least fifteen digits is
the subject of this note. The algorithm is not simple, but it is
far simpler than simulating multi-word arithmetic in BASIC .

The Computing Environment:

There are limits to the widths of the integers and floating-peoint
variables supported conveniently in programming languages like
Fortran, BABIC, Fascal and C. Integers on some computers may

Rational Arithmetic in Floating—Foint

be no wider than 16 bits, running from -—-32748 to 327473 on
‘most other computers the integers occupy 32 bits, running from
~21474 83648 to 21474 83647 . Integers bigger thanm that lose
their leftmost bits to Overfiow, usually without any warning
accessible to the higher—level language program. Floating-point
variables, limited fto 24 significant bits on some machines, *o
3 or 36 on most others, can handle much bigger integers; but
integers bigger than

2.08% = 147 77216.0 or

2.0%3 = Q00719 92847 40992, 0 or

2.09% = 72 0F75F 40379 27934.0 respectively
lose their rightmost bits to Reundory, and consequently become
multiples of powers of 2 even when ideally they should have been
odd. Similarly, on a typical ten—digit calculator, integers
bigger than 1 00000 00000 get rounded off to multiples of powers
of ten. Rounding errors occur without any warning to the pProgram
(except on machines that conform to IEEE standards 754 and pBS4,
- which require that rounding errors signal Inexact.) That lack of
warning obliges programmers to clutter some programs with tests of
the magnitudes of all intermediate results lest incorrect final
results be produced with no indication that they are wrong.

‘Let A stand for the smallest positive integer beyond which some
digit must be lost to overflow or roundoff; the previous
paragraph tenders values of A appropriate for various machines.
A is what is meant by "the widest integer that can be handled
conveniently by the computer’'s hardware or by its programming
language." The obvious way to calculate M/¥ described above ‘
would obviously work if [A*D|, (B*C| and [B#D| were all somewhat
smaller than A , as would surely be the case if lAl, I1Bt, ICI
and |21 were all somewhat smaller than ¥A . The vagueness heres
implied by the word ‘“somewhat" allows for sloppy implementations
of floating-point arithmetic that, on some machines, introduce
unnecessary rounding errors when integer results approach A too
closely. Notwithstanding that vagueness, an algorithm will be
presented that calculates # and N exactly whenever they and the
given integers A4, 8, C and P are all somewhat smaller in
magnitude than A rather than wmerely vA .

Rem, gcd, and Lowest Terms: .
Our algorithm will require certain utilities which, if not
already present in the programming environment, will have to be
programmed from scratch. Reducing (M*4)/(¥%k) *+0 its lowest
terms H/N requires that & = god(M*k, N#*k) be computed; and
the fastest ways to compute gcd's require that remainders be
computed. Let

remcx, y? .= «x - y¥(the integer nearest x/vy) provided vy # O .
This is consistent with the defirnition of the operation rem that
must be present in programming environments that conform to the
IEEE standards 754 and p8%54 for floating-point arithmetic. In
other environments, rem must be composed from other primitives.
In Fortran the generic intrinszic function MUOD (for INTEGERs, -

AMOD for REALs, DMOD for DOUBLE FRECISION) serves to define REM
thus:

k3

Rational Arithmetic in Floating-Foint

GENERIC FUNCTION REH(w,'y).
T REM = MOD(x, ¥ .
IF ﬁBS(REN)_.GT, ABS(y—-REM)Y)} REM = y —~ REM
RETURN : '
END ' o ' '
Absent rem and MOD, the following procedure might be used:
function remdx, vJ:
g t= x/vy 3§
n := g rounded to the nearest integer ;
return rem .= x —~ v¥n j
end. I o
Both procedures can malfunction when x appreoaches or exceeds A
in magnitudey the following example will show how roundoff in
x/y and vy#n causes trnuble.

Suppose ¥10ating-point arithmetic is rounded to six significant
decimals, for which A = 1000000 . Now take X = 999999.0 and
y = 9901,.0 , whersupon x/y = 100.99979 80002 ... must round

te g = 101,000 . Then n = ¢ 3, but vy#n = A+ wmust round to
A, which wrongly returna -1.0 instead of -2.0 Ffor rem .
Similar rounding errors inside the implementation of AMOD can
return =~1.0 instead of 9899.0 for AMOD(999999.0, F901.00) .

If the guotient x/v were chopped instead of rounded, no such
malfunctions could occur. With rounding, they can be aveoided by
keeping Ix| and |yl both smaller than A/2 . If the error bound
for floating—-point division is vague, as it is for CRAYs, we
can compensate for ignorance by further restricting x| and Iyl j
that is why phrases 11ke "somewhat smaller than A " have bheen
uttered aboave. :

Having found a way to compute remdix, y’) well enocugh that
{x = rem(x,y))/y is an integer exactly, and
| remix,v) | < - Avl/72 roughtv, . :
we may use it to compute Greatest Common Divisors quickly thus:
function godix, vt

while v # ¢ do { temp i= v
' : Yy r=remix, vJ) ;
. x = temp I 3
return god = x| 3

end.

Besides the usual prnpertles for positive 1nteger5 x and v
namely

gcd(x,y) is the largest integer such that

x/gcdix,y) and y/ged(x,y) are both integers exactly,
this procedure gocd(x, v} has useful properties when its
arguments are negative integers or zeroj

gedix,y? = ged(lIxl, |vld = and gocddx,0) = godio,x) = (x| .-
These prcperties simplify the explanation of the assertion
* H/N is in lowest terms, "
which shall now be taken to mean that integers H and N satisty
" N » O, and either gcd(M,N) = 1 or M= N=0O, "

We shall abbreviate "in lowest terms* to "ilt" and use it not

only as an adjective but also as an operator that maps pairs of
integers to pairs thus:

Rational Arithmetic in Floating-Point

function Ilétix, vJ):
g 3= copysign(mah{gcdtx,yj 12y v 2 3
return It $=](jx/aq v/’q ¥ 3
end. _ , . _ : ‘
Now agsertzng that (¥, N) = Ilt(x, y)* means the same thing as
M/N = x/y 1lt .

Idealized Ratxunal Dperatxuns
The mapping - Ilt provides a- unlque pair of 1ntegers {(H,) to
reprasent each rational number M/N = x/y ilt , including also
+1/0 = +¢, as well as a representation for the entity 370
called "NaN" (for “Not a Number") in the IEEE standards for
floating-point arithmetic. But those standards also specify how
+0 and -0 will bahave ar1thmet1:a11y in case a programmer chooses
to distinguish them, something that cannot be done usefully on
most machines that do not conform to those standards. Without a.
well—-behaved signed zero, - attempts to distinguish between +%
would run afoul of identities like M/N = -1/(~N/M) "when ¥ = 1}
and N = 0 . That is why we shall herein regard 0 as unsioned,
like O 4, as if the ends of the real axis had been lifted and
joined to form a circle put of it. Rational operations consistent
with that picture are defined in a familiar way as follows:
A/B + C/D . (A%D + B*C)/(B¥*D) ilt respectively 3
(A/BY % (C*D). . ; CA%C)Y £ (B*D) ilt '

CCA/BYE(C/DY (A*DY /(B*C). ilt

A/B = C/D just when A%D = B#*C but |A%C| + |B*D| # O
Thus, the set of all rational numbers, augmented by ® and 0/0
constitutes a system closed under: the rational operations so
defined. But the subset of rational pumbers #/N representable
conveniently on our computer, those for which [/ and Nl do
not exceed A , does not constitute a cleosed system; instead it
poses a challenge to implement the rational aperations correctly
for those operands and results that do lie within the subset,

ihnou

Implementations of multiplication, division and eguality-testing
are entirely straightforward, as follows below, provided all
operands are ilt. In other words, the operands are presumed to
be pairs of integers that will pass unchanged through the function
Ilt , and the results will do the same provided their magnitudes
are somewhat smaller than A .

function Froductfﬂ,'B, S, D3t ... to get {A/B)*(L/DY i1t
k = maxi{l, geddd, DI} 1 m = maxil, gqcddB, CJ)} ;
return. Product = ((A/k)*(C/m), (B/m)%(D/k} } ;
end. ' : '
Note that if the final results are all somewhat smaller in
magnitude than A then the same must be true of all intermediate
results As/k, B/m, C/m and D/&k , so the final results are right,

function Quetient¢4, B8, C, DJ: ... to get (A/BY+(C/D) ilt
return duotient = ProductdAdA, &, D, €} 3
end.

‘Rational Arithmetic in Floating-Foint

logical function Egqual (A, B, C, D): ... does A/B = C/D 7
if (B=0 and D=0) then . _ : '
' { if {(A=0 or (C=0) then E£qual .= FALSE
o ' . else Equal ;= TRUE)
else { if (A=C and B8=P) then £gqual = TRUE
_ s ‘@lse Egqual = FALSE ¥ 3
retuwrn Equal ;
end.
This procedure Eqgual depends crucially upon the presumption that
its arguments A/B and /D are ‘ilt. Note also that ¢/70 is not
equal to anything, not even itself, since it's “Not a Number."”

Addition and‘subtraction-are'cumplicatEd procedures because they.

- have to cppe with expressions. like A*D+B*C ‘when their values are
somewhat smaller in magnitude than A even thaugh the individual
products are not. The ¥a110w1ng subprucadure is needed.

Coping with the Determinant = x#t - y*z :

~The evaluation of expressiong like - x%*t --y**- = det{y ¥} when
Xe ¥y Zy t and the determinant are all ‘integers somewhat smaller
than A in magnitude, even though. x%*. and y#z are both rather
bigger, is a subtask that OCCurs oftan enaugh to deserve separate
attention._ Dur approach is inspired by -~ Gaussian. Elimination
except that, instead of seeking a biggest pivet in order ta
secure numerical stability, it finds the smallest element in the
array (y) and reduces some other element to hal+f that size.

The reduction process ends either when x#t and y%z differ in
sign, or when they are both smaller than A , in which rcases the
determinant can be evaluated safely.

a
11 .

i
"~

function Det(x, vy, =z, t): " ... to get O
while x¥%¥t#y*z > A do =
¢ if Izl » Iyl then {5 i= & 3
N z =y o3
: ' o S Sl
if o lxl » 1tl then { = = x 3
o . S x =t g
: : ' _ t =5 3} 3
CiF o fxl F lz)l then { 5 = x 3
o ; o . Xoi= ~7 3
E W= Us g
5 = Y ﬁ
A R
_ _ _ t = = ¥ 3
Ceaa ch@w xSzl Iyl oand bxl s 1EE
n = integer nearest y/x. 3
Y 3= Y O~ X*N § aee s Foremiy, xJ
t 1=t - ¥R 3. .. = (Det + yhz)/X

wae NOW new v < Ix/2] and A
[Ilnew t| « jDet/x} + |z/21 .

.-

return ‘Det

= Wt -~ vz g
end. ‘

Rational Arithmetic in Floating-Foint

Addition and Subtractions: , T ‘

Like the foregoing functionsz Froduct and Guotient, the following
_procedures act upon two pairs of integers that will pass unchanged
through the function Ilt, and the results are pairs that will do
likewise provided their magnitudes are somewhat less than A .

function Sum(A, B, C, D)z ... to get <(A/B) + (C/D) ilt
return Sum .= DiffcA, B, ~-C, D) ;
end. : ' - :

function PifrcA, B, C, DI): g;,._ to get (A/B) -~ (C/Dy ilt
G = max{l, gcd(B,D)} 5 b = B/G 3 d = D/G ;
A NGH we saek (Axd-L%0) /S (GRD*d) ilt, but first we

Fad

must cancel any common factor g hiding in & 1@

a = rem(A,G} 3 o= rem(C,G) § g = gcd(G, a®d-b*c) 3
«se Note |awkd-b¥c| i Id*6/¢i+lb*6f”l 4OA . ‘ :

N = (G/g)y#bxd 3 ... the desired denominator.

sea . The numerator will be # = (A%d—b#C)/g ...

a = remfa,glt ;- o .= rem(c,gl) 3 L

" = (a*d—b*z)/q <+ Det((A-a) /g, b, (C-c)/g, d } 3

«as Note how la%d-bxc| A as before.

return DI¥f := (M, M) ;' '

end.

Ara they north the bather7.
It geems at first unlikely that a cal:ulatlnn af. _

_ M/N i= CA/B + C/D - = (AxD + B#C) /(B¥D) 1ilt
would start with integers A, B, €, I not nmuch smaller than A
and end with integers M, ¥ .no bigger than A . But, having
programmed the foregoing procedures into various programmable
calculators including an HF-27 - and.an - HP-71E, I have seen
these unlikely events occur about as often as not. Perhaps this
is merely evidence that I have been computing some things the hard
way instead of the easy way, rather than evidence that anyune
else will use the programs every day.

Thessa prqgrams arE'thefslmplestrI_knowfthat exemplify a property
more often. found among numerical programs than otherss their
simple and natural specifications belie complicated and unnatural
implementations. It may seem natural to demand that, if the data
given a program and the output desired from it can both be
represented exactly within the convenient range of a computer s
capabilities, the output actually delivered should be correct.
But that demand implies that the program will find a path from the
data to the output without first transgressing the computer’'s
limitations despite that the path-begihs.and gnds only a step or
two away from the edge. Such a path need not be obvious.

Programss - . :

Frograms for the HF-67/97 and HF-71E have been appended to
these notes., The program for the HF-67/97 requires very little
change to run on the HP-41C or HF-13C. Although the HF-71R
program is written in a kind of BASIC that looks as if it would
run on diverse other machines, +the program exploits the HF-TIR's
conformity to IEEE p834 in two ways. First, i1its rem operator

-

Rational- Arithmetic in Floating—-Foint

(called RED on the HP-71R) is built-in and allows the program
to handle integer inputs as big as A = 100 00000 00000 . Second,
the Inexact. signal accessible thirough FLAG(INX, ...} permits
the program to try obvious algorithms first and then, oniy if it
encounters roundoff, resort to slower ones. Chained sequences of
rational operations can be attempted in confidence because their

results will assuredly be correct unless Inexact is signaled.

Acknowl edgements:

Although prepared in this ¥orm for an Introductory Numerical
Analysis class, thess notes are based upon researches continued
aver an extended period. The author has used procedures similar
to. Det in programs that solve linmear and quadratic equations,
precondition ill-conditioned problems to make them zasier to solve
accurately, and prepare test data for other programs. That work
has been supported at times by. grants from the Research Offices.
of the U. 5. Army, Navy and Air Force under contracts numbered
respectively DAAG2F-BI—K—0070, NOOOI14~746~C-001T and AFOSR-84-0158,

HP-41/97 progras to perform RATIONAL ARITHNETIC on pairs of integers in Lowest Teras

Usage: The stack holds four integers X, ¥, I, T construed as two rational aumbers Y/{ and T/I ,

: both presused to be in lowest terms (ilt). If not, pressing {E} will reduce Y¥/Y to lowest
teras while leaving T/I1. unchanged. The four rational operations are performed by pressing one of
the keys (81, [B1, (Cl, ID] to invoke reiiable pragrass, or {al, (b1 (c] [d1 to inveke obvious
programs. The reliable programs accept integers as large as 1,999,999,999 and deliver exactly
correct results up te 8,000,000,000 . Specificaily, the prograss ...

Add: Press (Al or [al toput Y/X = (T/I) + (Y/X) ilt, leaving T/1 unchanged,

Subtract: Press (B} or [B)- to pet VY/Y 0= (F/1).- (Y/X} ilt, -leaving T/ unchanged.

Maltiply: Press {C1 or [gl to put Y/X i= (T/2) ® (Y/X} ilt, leaving T/I .unchanged.

Divide: Press (B} or [dl toput Y/X o= {T/1) # (YAX} ilt, leaving T/7 unchanged,

Reduce: Press [ET to-put Y/X '= {Y/X) 'ilt, leaving T/I unchanged. -

6ED: Press [el toput X i= Greatest Common Diviser of X and ¥ .

REN: Prass. {GSB] {8] toput X =Y -nX and o != [nteger nearest Y/X inta req. 8.
- The programs use registers 0 to 8 and I, and labels 2 to 8 too.

Program: #LBL A CHS #.BL B GSB 7 X2Y Rt STO 4 GSB e X=07 EEX STD 5 STO+0 S§TO+#4 RCL { X3Y
66B 8 RCL & x STO 4 RCL 3 Rt 6588 RCLO STB 7 x ROL & - 6SBe STO:5 RCL 1 X2V
668 8 RCL 4 STOxO x« STO ! RCL B STO 6 REL 3 -RPGSBA REL7 x RCL ! - MY 4 STO 4
ROL 5 STOx0 REL 8 STO5 #BL S RCL & RCL 4 x ENTH ENTH ROL S ROL7 x x EEX 10
15¥7 BTO 4 RCL & ABS RCL 4 ABS ¥CY? BTD 3 LASTY RCL &4 STO & X3Y STO & #BL 3 RACL S
ABS REL 7 ABS X{Y? BTD I LASTX RCL 5 STD 7 X3Y STOH S #LBLI RCL 7 ABS RCL 4 ABS
3Y? BTG 3 RCL & RCL 7 G5B 8 G6TD 4 RCL 4 RCL @ x STO-5 BTOS #LBL 3 RCL 5 REL 4
G588 STOS RCL 7 ROL 8 x STO-6 6T S #LBL 4 LASTX Rt - 8§70+ 670 6

#BLe J CHS STR T Ry =07 6TC 2 558 BT0i (jumps back three steps to X=07)

#LBL 8 ST0 8 XY ENTt ENTH RCL 8 + DSP O AND STOB RT x - RTN #LBL 2 XY ABS RTN
#BL 7 STO O Ry STO'{ R¥ STD 2 RY STD I RWN

#LL E G5B 7 R¥ G5B e X=07 670 & STG:0 S5T0+1

HMBL & ACL 3 REL 2 RCL [RCL 0 X>07 RTN CHS X3Y CHS X3Y RIN

#LBL D XY HBLC G5B7 STO 4 G5B e Xf07 STOS0 {#07 STOS4 RCL { RCL 2 6SP @

$#07 ST0#1 RCL 2 X3Y X#07 + STOxd RCL 4 STOx1 67O &

#BL a CHS #BL b GSB7 x X2Y Rt STOx0 » - STO ! GEB& BTDE

$LBL d X3Y #LBL ¢ GBB 7 G5TOx! Rt STOxO B65B & GTOE

1¢
20
30
44
50
&0
70
80
90
100
110
120
130
140
150
160
1760

180

190
200
210
220
230
240
250
260
270
280
290
JQ0

T o VA

S0

I20
330
340
350
360
70
380

90 .

400
410
420
430
440
450
460
470

480

490
SO0
510
520
530
540

550
560
570

Rational Arithmetic in Floating-Foint

Listing of HP-71B program to perform RATIONAL ARITHMETIC

in Lowest Terms conveved as
"Complex Variables" to represent R = M/N as (M,MN) .

The "Complex” functions herein are ...

S(R,3) = R-§

upon pairs of integers

fnA{R,S8) = R+S - ~fn
frnM(R,8) = R#5 fn

D(R,8) =

R/S

fRIR) = R in lowest terms (ilt)

Supporting Real functions

£nDO(R,8) = det(R,3)
! fAG(I,J) =
! RED(I,J) = rem(I,J)
1
i

include ...

= Impt (Conj (R)*5)

Greatest Common Divisor of I and J .
= I rem J
RUN to sense FLAG(INX).

as in IEEE st'd pB54

and reset it to © ;3 if that

changes then a result has been compromised by roundoff.

COoMPLLEX R,5, R1,851, R2,82
P 33000 30 3 20 2o o 20 30 0 '

DEF FNG(ID,JO) ! L.. = GCD
IF JO=Q THEN 190 B

» RI,83,

{(I0,J0)

R4,84, RS,55, Ré

p00=J0 @ JO=RED(I0,JO) @ I0=00 @ IF JO#O THEN 180

FNG=ABS (I0) @ END. DEF
Dot e R 0

DEF FNI(R&) ! ... = R& IN LONEST TERMS
FNI=R&/MAX (1, FNG(REPT(R&),IMPT(R&)))*BEN(CLASS(IMPT(R&)))

END DEF
! ***************.

DEF FNDO(RS,55) ! ... = de
01=REFT(RS) @ oZ=IMPT(RS)

IF 20=0 OR o3#1 THEN 350
IF ABS(03) *ABS (o) THEN

IF ABS{01)<=ABS (03) THE

o0S=01 @ ofi=-03 @ oZ=a3 @ o0S5=02
0d3) /ol @

oS=RED (02,01) @ oO=(02-
GoOTO 270

t {RE,85)

= Impt{Coni (R3)*55)

@ pl =REPT455) @ p4=IMPT (53)
QO=FLAB (INX,Q) @ al SGN(DI*04)*SGN(O2*03) @ o0=sFLAG(INX,00)

oS=0l @
IF ABS(ol) >ABS(04) THEN oS=ol @

N 330

0l=02 @ o¢=o=

ol=p4 @ od4=a

@ p2=-0d4 @ od=p5

02=n5 @ o0d=0d-o3I*ol

FNDO=Q] #04—2l#a3 @ END DEF
BTt 360 e 3 e
DEF FNM(R4,84) ! ... = R4#54 in lowest terms

o1=REFT (R4) @ 02=IMFT (R4) @ 03F=REFT(S4) @ 04=IMFT(54)
oS=MAX (1 ,FNG (01 ,04)) @ oO=MAX (1,FNG(02,03))

FNM"((DI!Q)*(c&/oO)
Fo el 036 06 20 e e e

(02/00) # (04/05)) @ END DEF

DEF FND(RE,S3)=FNM@R3,(IMPT(SS),REFT(SS))) P eee = RE/GE 11t

DMt NN
DEF FNS(R2,82). ! ... = R2
oi=REFT(RI) @ od=IMPT(RZ)

oO=FLAG (INX,0) @ oS=n1%04-

-52 in lowest terms
@ O3=REFT(82) & o4=IMFT(SZ)

O2*0S @ ob=02%04 @ DO=FLAG(INX,o0)

IF o0=0 THEN FNS=FNI{(0S,06)) @ GOTO 530

o?=MAX (1 ,FNE(oZ2,04)) @ oZ=aZ/07 @

o4=04/0%

o&=RED (0l ,09) @ o7=RED(03,0%) @ oI=FNG{u?,06%04—ql*07)
0?={0?/00) ¥ol*04 @ 0bé~RED(0&,05) @ o7=RED(07,05)
08= {0&6%04—-02%07) /00 @ ol=(al—-0&6) /03 @ oi=(03~n7) /a5

FNS={(FNDO ((a1 ,02), (03,04
END DEF
U e T B e P e
DEF FNA(R1,81)=FNS(R1, (~RE
L X2 EE L L L

IF FLAGC(INX,0)=0 THEN DISF-

})+oB8, o)
FT(SI) IMPT(S1))) ' .. = RI1+G] ilt
"Exact!" ELSE DISF "Inexact"

8

Security Clussification

DOCUMENT CONTROL DATA-R&D

LSevutity clas silicotion of title, by of dhstrie tand mdexing aentotntion nuast be enrered when the averall report is Classitied)

I OMIGINATING ACTIVITYY fCorporate authar)

Univeréity of California, Berkeley

28 REFPORT SECURITY CLASSIFICATION
Unclassified

2b. GROUP

3 REPORT TITLE

Rational Arithmetic in Floating-Point

4. DESCRIPTIVE NOTES (Type of report and inclusive dates}

CPAM report, September 1986

W. Kahan

S. AUTHORS (First name, middle initiaf, (ast nume)

£t REPORT DATE

September 1986

18. TOTAL NO, OF PAGES ., NO. OF AEFS

88, CONTRACT OR GRANT NO.
NOOQ14-85~K~0180

b, PROJECT NO.

d.

98. ORIGINATOR'S REPORT NUMBERIS)

6. OTHER REFPQRT NO(S) (Any ather numbers that may be assigned
this repore)

10. ISTRIBUTION STATEMENT

1. SUPRLEMENTARY NOTES
Also supported by
DAA629-85-K-0Q70
AFOSR-84-0158

(U. 8. Army)
(Air Force)

12, SPONSORING MILITARY ACTIVITY

Mathematics Branch
Qf fice of Naval Research
Washington, DC 20360

13 ABSTRACT

schools;

Calculating
the integers

14, B, C and D,
and it is an easy exercise in

M/N = A/B + C/D in lowest terms,

is a task taught in

given
. Elenentary
Computer Programming

computer’'s hardware or by its programming
program becomes much more complicated
naively expected to perform correctly
integers A4, B, ¢, D, # and N

wide as those widest convenient integers.

illustrates why the art of programming
delicate balance between, on the ane hand,
and aesthetic appeal of the specifications

hand, the complexity and efficiency

too provided the given integers must be less than half as wide
as the widest integers that can be handled 'conveniently by the
language.

(and slower) if
whenever all six of our
are allowed to grow almost as
This simple task
entails sometimes a
the

and,
of the implementation.

Eut that
it is

simplicity
on the other

(PAGE- 1}

DD "%.1473

S/N Q101.807-.6801

Security Classification

