Aekokook
o sfange
seokokokok
AKetokAok

sqrt pol
This is only a draft. Tha algorithme listed in section B haven't been
texted thoroughliy. Please= don't redistribute it.
futhors: W. Kahan and K.C. Ng
Date: S/6/86

Two algorithms are given in this document to implerment V% in
software. Both supply V% correctly rounded. The first alagirthm {in
Section A) uses newton iterations and involves four divisions. The
second one uses reciproot iterations to avoid division, but requires
more multiplications. Both algorithms need the ability to chop results
of arithmetic operations instead of round them, and the INEXACT flag
to indicate when an arithmetic operation is executed exactly with no
roundoff errar, all part of the standard. The ability to perform shifg,
add, subtract and logical AND operations upon 22-bit waords is needed
too, though not part of the standard.

ﬁ by Newton Iteration

. Initial approximation

Let ¥y and x4 be the leading and the trailing 32-hit words of a floating
point number « (in IEEE double format) respectively (of section B of
REQUIRED SUFPORT FUMCTIOMS):

n
ra

. I'v'\{]. Ij th S

msb lsb msh Iz .. arder

10}
o

[0
[}
£

5
“qe 15l g | f,] Hyl] fs

By perfarming shifts and subtracts on xq and », (both regarded as
mtegers), we obtain an 8-bit approximation of % as fallows.
ko= (k== 1)+0x 1 {{E0000;
Y =k - T1{318&(k>>15)]. o = /% to & bits
Here k is @ 32-bit integer and T1{] is an integer array (see section C

)

for its values) containing carrection terms. Mow rmagically the floating

sqrt p.2
value of y (y's leading 32-bit word is y,, the value of its trailing word
yy is unimportant) approximates V¥ to almost 8-bit.

Iterative refinement

Apply Heron's rule three times to y, we have y approximates V¥ to
within 1 ulp (Unit in the Last Place):

y = (y+x/y)/2 ... almost 17 sig. bits
y = (y+x/y)/2 ... almost 35 sig. bits
y = y-(y-x/y)/2 .. within 1 ulp

Remark 1. Another way to improve y to within 1 ulp is:
y = (gex/y); .. almost 1?7 sig. bits to 2%
Yo = Yo - 000100006 .. almost 18 sig. bits to /%

y =yt 2 < within 1 ulp

Thig farmula has one divieion fewer than the one above; however, it
requires more multiplications and additions. Also x rmust be scaled in
advance to avoid spurious overflow in evaluating the expression
Jye+x. Hence it is not recommended unless division is slaw. If
division is very slow, then ane should use the reciproot algorithm
given in section B.

Final adjustment

By twiddling y's last bit it is poseible to force y to be correctly
rounded according to the prevailing rounding mode as follows. Let r
and | be copies of the rounding mode and inexact flag before entering
the square root pragram. Alsc we use the expression yzulp for the
nexi representable floating numbers (up and down) of . Mote that
yrulp = either fixed paint y £1, or multiply y by nextafter(1,+co)

in chopped mode,

I := FALSE;

R:=RZ;

Z:=x/y;

If (nat I) then { .
if (z=y) goto Label;
else z = 2 - ulp;
}

i == TRUE;

If (r=RN) then z= z + ulp;
If (r=RP) then {
y= 2z + ulp; 2= 2
!
Y = y+z;
Y = Yg-0%00 100000;

+ ulp;

Label:
I:=1; ... restore inexact flag
R:=r; .. restore rounded mode
return vx = u.

1l

Jpacial cases

dquare roat of +oo, +0, o NaM is 1tselt;

sqri p3

.. reset INEXALCT flag I.

... set rounding mode to v -Eowde T -IEn
. Chogped quotient, possibly inexact

Jf the quotient is exact
/¥ is exact

...special rounding

.. V% is inexact
...round-to-nearest
...round-toward- +e

. chogped sum
Y 1= y/2 is correctly rounded.

Jquare root of a negative number is MNaM with invalid signal.

e by Reciproot Iteration

Initial approximation

Let Xy and x4 be the leading and the trailing 32-bit wards of a floating
puint number x (in IEEE double format) respectively (see section A).
By performing shifts and subtracts on xq and xy, we obtain a 7.6-bit

approximation of 1/y/% as follows.
k= 0x51eS0000 - (xy>>1);
o =k - T2[63&(k>>14)].

Here k is a

= 17X to 7.5 bits
32-bit integer and T2(] is an integer array {see section [

below for its values) containing correction terms. Mow magically the
Moating value of y (y's leading 32-bit word i yg, the value of its
trailing word y, is unimpartant) approximates 1/4/% to almost

7.8-bits.

TRy

"

o—

sqri p.4
Tterative refinement

Apply Reciproot iteration three times to y and multiply the result by =
to get an approximation z that matches /X to about 1 ulp. To be
exact, we have -1 ulp < /X - z < 1.0625 ulp:

...set rounding mode to Rownd-to-nearest
y = y*(1.5-0.5%x*y*y) ... almost 15 sig. bits to 1/y%
y = g*((1.5-2730)+0.5*x*y*y) ... about 29 sig. bits to 1/v/%
...special arrangement for better accuracy
2 1= x*y ... 29 bits to v/, and z*y<!
z 1= z+0.5*%2%(1-2*y) ... about 1 ulp ta v'x |

Remark 2. The constant 1.5-273% is chosen to bias the error so that
(a) the term z*y in the final iteration is always less than 1
(b} the error in the final result is biased upward so that
-1 ulp < /% - 2 < 1.0625 ulp
instead of |v/% - 2| < 1.03125 ulp.

Final adjustmeant

By twiddling 2's last bit it ic possible to force z to be correctly

rounded according to the prevailing rounding mode as follows. Let r
and i be copies of the rounding mode and inexact flag before entering
the square root program. Also we use the expression yzulp for the next
representable floating numbers (up and down) of u.
R:=RZ .. 3BT rounding made to rOunT-{0ward-s800
switch (r) {
case RN: ... round-to-nearest
if (% < 2¥(z-ulp) ... chopoed) 2 = 2 - ulp; else
if (%< 2%(2+ulp) ... choppsd) 2 = 2 ; else z=z+Ulp;

break;
case RZ: case RM: .. Found-ta-zere or round-to- -ce
K= RP; ... reset rounding mode to round-to- +oo

if { 8 < 2%2 ...rounded up) 2 = 2 - ulp; else
i (% z (Z+ulp)*(z+ulp) ... rownded up) 2 = 2 + ulp;
break;

case RP: ... Found-ta- +oo
it (w > (Zrulp)*(z+ulp) . chapped) 2 = z+ 2*ulp; else
if (x> 2%z ...chopped) z = z+ulp
break;

sqrt p.S
Remark 3. The abave comparisons can be done in fired paint. For
example, to compare x and w=z*z ciyggped, it suffices to
compare x; and wy (the trailing parte of ¥ and w), regarding
them as two's compliement integers.

...I§ 2 an exact square root?

To determine whether z is an exact square root of x, let 2, be the
trailing part of 2, and also let %y and %y be the leading and trailing
parts of x.

If ((2,&0x3f({{f) 1= 0) ..not exact if trailing 26 bitsof z 1= 0
I:=1 ...Raice Inexact flag: z is not exact
else {
ji= 1 - [(%e>>20)&1]; ...j = logh(x) mad 2
k=2, >> 26; ...get 2's 25-th and 26-th fraction bits
I:=1or (k&j)or [(k&(j+j+101=(x,&3) |
}
Ri=r ... restore raunded mode

return /% := 2.

If multiplication is cheaper then the foregoing red tape, the Inexact
flag can be evaluated by

I:=1;

Ii=(z*zl=wjor L
MNote that z*z can overwrite I; this value must be zenced if it is
TRLIE.

Remmark 3. If z*z=x exactly, then bit 25 to bit O of 2z, must be zero.

21: i f1> |
bit 31 bt O

Further more, bit 27 and 26 of 24, bit 0 and 1 of x4, and the
odd of even of logh(x) have the following relations:

bit 27,26 of z; bit 1,0 of x, logh(x)
Q0 Q ndd and even
01 01 even
10 10 ndd
10 00 even

11 01 even

sqrt p.h

See (4) of Section A.

C. IEEE double y'x using Newton iterations in pseudo C

/* Constants: */

static Iong TiH = { /* table lookup canstants */
0, 1024, 3062, 5746, 9193, 13343, 18162, 23592, 29595,

36145, 43202, 50740, 58733, 67158, 75992, §5215, §3599,
71378, 60428, 50647, 41945, 34246, 27478, 21581, 16499,

12183, 8588, 5674, 3403, 1742, 661, 130, };

static int-
RZ = - round-toward-zero
RN = ... Found-to-nearest
RF = ... Found-toward- +co
RM = ... round-toward- -co;
j0 = ... position of leading word
it o= .. position of trailing word {see section B of REQUIRED

.. SUPPORT FUNCTIONS)

/* Main program */
double sqrt(x) double y;
double sra/8();
int sinite(), renan()
int nx, i, r, &
double y;
unsigned long k,
*px = (unsigned long *) &, /* pointer to x */
*py = (unsigned long *) &y ; /* painter to y */
7k
* filter out exceptions
*}/
i CV finife(x) Il x <= 0.0
if (Zsnan(x)ll x >= 0.0)

return x; M sqrt of Nal, +eo, or 0 is itself */
else
return (x-xJ/(x-x); /* sqri(x<0) is NaN */

else {

/%

* Save, reset and initialize:

* /
¢

I .. save INEXACT flag I.
r:=R; R:=RZ ... Save rounding mode and

sqrt p. &
... reset to round-toward-zeroc.
< = pxljol; /* k = the higher 32 bits of x */
ng = Q;
if (k < 0x00100000)
/*
* Subnarmal number: scale up % by 23* and recompute X.
*/

{ nx = 27;
X = scalb(x,54); .. perform x = x*2%4
k = pxliol

}

/*
* Magic initial approximation to almost 8 significant bits
*/'
k= (k==1}+ OxtffGOOCO;
puliol =k - T1{ (k >>15)&31 |;

‘,f*

* Heron's rule thrice:

*,.’
y= (],5*(9 + x,’g);
y = 0.5%y + x/y) \
y=y- 0.5%y - «/y) /* g = sgrt(x) to within 1 ulp */
/*

* Twiddle last bit for correctly rounded sqrtix)

* ¢
’

I:=FALSE ... reset INEXACT flag I.

z = x/y; /% chopped quotient, possibly inexact */

if (not I) ... if quotient is exact then goto final if z=y
if (z == y) goto final; /* z is the exact sqrt(x) */
else z = z - wip; w 2=2-ulp

i:= TRUE ... sqrt{x) is inexact.

switch (r) {

case RN:
2= 2+ U, w2 =2+ ulp
break ;

case RF:
2=z up w2 =2+ ulp
y= y+ U=y rulp
break ;

sqri p. 9

y = 0.5%(y+2z); /* chopped sum */
/ar-
* final step: restore flags and offset scaling
*/
final: R:=r; I:=1i; ... restore rounding mode and INEXACT flaq.
if{nk1=0) |
y = sca/b(y,-nx); /* offset scaling for subnormal number */
return y;

D. IEEE double yrx- using Reciproot iterations in pseudo C

/* Constants: */

static long T2[]={ /* table lookup constants */

0% 1300, 0x2efB, Ox4d67, Ox6D02, 0x67be, 0xa395, Oxbe7a, OxdGEA,

Oxflda, 0x1091b, Ox11fcd, Ox 13392, Ox14999, Ox 19098, Ox16e34,

Ox 17e3f, 0x18d03, 0x19a301, Ox1aS45, Oxlaeda, O0x1b5cd, Oxthbal,

Ox1bfde, Ox1c28d, Oxic2de, OxicOdh, Oxlba?e, Oxibt i, Ox1adha,

0% 1953d, 0x 18266, 0x16be0, Ox1683e, 0x 17245, 0x158a4d, 0x 132332,

0v1a?u9 Ox 10445, Ox1bf61, 0x1c989, Oxi1d16d, Ox1d77h, Oxdddf,
xleZad, OxleSbf, Oxleted, Ox1e654, 0x1e3cd, 0x1df2a, Ox1dE3S,

Ox1ub16,0x1b920,0xlae4e,ux19bde,0x18689,0x1692e,0>152?

Ox1334a, Ox 11051, OxeQS 1, OxbeC 1, OxSeQd, (x5924, Oxiedd);

1

static int
RZ = ... round-toward-zerao
RN = ... Found-to-nearest
RP = .. round-toward- +oe
RM = ... round-toward- -oco;
jo = ... pasition of leading word
= .. position of trailing word (see REQUIRED SUFFORT

.. FUNCTIONS)

/* Main program */
double sgrt{x) double x;

double sca/6();
int siarfe 0, feran ();
int nx, 1, r,
double y,z;
unsigned long Kk,
*px = (unsigned long *) &x, /* pointer to x */
*pz = (unsigned long *) &2 ; /* pointer to 2 */
I*
* filter out exceptions
*/
if (! rnite(x) l x <= 0.0)
it (Zsnan(x) g >=0.0)

return x; /* sqrt of NaN, +eo, or 20 ig itsell */
else | |
return (x-x)/{x-x); /* sqrt(x<0) is NaN */
else {
i

* Save, resef and initialize:

*{z‘
=1 .. Save INEXACT flag I.
r:=R; R = RN ... save rounding mode and
... reset to round-to-nearest.
k = pxliok /* k = the higher 32 bits of x */
he = 0

if k< 0xD0200000)

/*

* Subnormal number: scale up x by 2%% and recompute x.

*
{nx =27
X = soalb(x,54); .. operform x = x*23
ko= px[i0h
}
r*

* Magic initial approximation to almost 7.8 significant bits
*/

k = Ox5fe&0000 - (k >>1);
pulio] = k - T2l (k »>14)&63 |

|"‘l*
* Reciproat iteration:
*/
. U = U*(]_S - O-S*Q*Q*X);
g = y*(1.4999999990686677425 - 0.5*%* | *x);

sqrt p. 10

sgrip. 11

z = y*x
= z + 0.5%2%(1 - z*y); /*y = sqrt(x) to about 1 ulp */
/*
* Twiddle last bit for correctly rounded sqri(x)
*/
R:=RZ ... set rounding mode to /wund-foward-zerv
switch (r) {
case RN: ... round-to-nearest
if { x = 2%(z-ulp)) z = z - ulp; else
if (x < z*(z+ulp)) 2z = z ; else z=z+ulp;
break;
case RZ: case RM: ... round-to-zero and round-to- -oo
R :=RF ... reset rounding mode to round-to- +eo
if (x<2z*z2)2=2-ulp; else
if (® = (z+ulpy*(z+ulp)) 2 = z + ulp;
break;
case RF: ... round-to- +ec
if %> (Z+ulp)*(z+ulp)) 2 = 2+ 2*ulp; elce
if (& >2*2)z=z+ulp;
break;
}
If ((2,&0x3ff{fff) 1=0) ..not exact if trailing 26 bits of 2 1= 0
I:=14 ..Raise Inexact flag: z is not exact
else {
ji= 1 - [(g>>20)&1); ..} = logh(x) maod 2
ko= 2y => 26 ..get 2's 28-th and 26-th fraction bits
ITi=1or (k&j)) or [(k&(j+j+1)1=(x,&3) I;
}
/‘*
* final step: restore flags and offset scaling
*/
Ri=r; ... restore rounding mode,
if{nx!=0)
= scalb(z,-nx); /* offset scaling for subnormal number */
return z;
}

	EPSON001
	EPSON002
	EPSON003
	EPSON004
	EPSON005
	EPSON006
	EPSON007
	EPSON008
	EPSON009
	EPSON010
	EPSON011

