Softiare ~/x for the Proposed IEEE Floating-Point
Standard

_ W. Kahan
University of California at Berkeley

~ August 25, 1980

Introdurtion:

Whether every implementor of the proposed standard must provide vz
correctly rounded has been a controversial question. There is a large market
for inexpensive fast implementations designed for computations in which vz
never figures; why should these implementations be burdened by an unneces-
sary unwanted expensive feature? They shouldn’t.

Part of the controversy arises because the word "implementation" is fre-
quently misinterpreted as "hardware". Actually hardware and software may and
usually must be used together to implement the standard fully, and the imple-
mentor is free to draw the boundary between the two as best suits his goals. For
instance, he may design a chip to add, subtract, multiply and divide very fast,
but omit square root to keep his chip's area (dand hence cost) as low as possible.
Provided he offers appropriate software with the ¢hip, it can conform to the pro-
posed standard in all respects.. Of course, the software square root may well be
slower than one implemented in hardware on the chip, but that is an aspect of
the cost-performance trade-off that reflects the perceptions of the marketplace.
To diminish the loss of speed, the chip's designer should include on-chip what-
ever extra features will promote faster software at negligible additional cost
when the chip is designed. Paradoxically, a chip that includes those few extra
features will cost the consumer less than a chip that lacks them, even if most
such features are superfluous to most consumers’ needs, provided each added
feature enlarges the chip’'s market in a way that, by increasing the volume of
production, cuts the chip's price below that of a simpler chip produced in
smaller numbers. Customers who believe initia\l/lz that vz is superfluous will
none the less prefer a chip that can calculate vz quickly via software to one
that cannot, other things being roughly equal; no prudent purchaser will disre-
gard the value of an option which could rescue him when initial beliefs turn out
later to be wrong. o S

The following algorithm provides just one of many ways to implement VT in
software. It supplies vz correetly rounded at an acceptable cost provided divi-
sion is fast, since the program involves three divisions. Also needed are the abil-
ity to chop sums and quotients instead of round them, and the INEXACT flag to
indicate when a quotient leaves a remainder, all part of the standard. The abil-
ity to perform shift, add, subtract and logical OR operations upon 32-bit words is
needed too, though not part of the standard. i '

-2.

+Vx algorithm for the proposed JEEE ﬂoat.ing—point. standard

What follows is an algorithm to calculate vz correctly rounded to SINGLE-
precision using rational SINGLE-precision floating-point arithmetic and some
fixed-point operations on 32-bit words. Included is a description of how the algo-
rithm was tested.

The format for a normal SINGLE-precision floating-point number is:

‘ , 1 8 23 bits
g=(-1)0 - 2E-®. (1Y~ [0 | E | F 1
implicit bit ¢ sign Biased Significand

bit Exponent Fraction

provided 1 £ E £ 254. The maximal exponent F =255 is reserved for

gither z = +wo (E =255, =0)
or z = NaN (Not-a-Number: E = 255, F > 0).

The minimal exponent E =0 is used to encode denormalized numbers

oz = (=) 21-127, (0 F'). ...note implicit bit in exponent
or z = 30 when F=F=0.. - :

The algorithm below separates both épecial exponents =255 and £ =0 from the
others in Step #0 which, for simplicity's sake, presumes that no traps exist.

We shall identify the floating-point number x with a fixed-point number X
that is the value -of the 32-bit word x above when interpreted as an unsigned
integer X = 2% g+ (E.F) 2% Similarly for y and Y, z and Z; arithmetic upon
lower case x, y, z is SINGLE-precision floating-peint but upon upper case X, Y, Z
we perform integer arithmetic or logical operations. - :

vx algoﬁtiuin

Input: o .
32bitwordx~{og | E [F J

00 for round-toward - zero

. 01 for round-toward - —=
Current rounding mode: R=| 14 tor round-to-nearest

11 for round-toward - +w.

o ' 0 for projective mode
Current infinity mode: W=} ;. affine mode

-3-

0 for warning (not normalizing) mode

Curren.tT underflow mode_: U=| 1 for normalizi ng mode

Current INEXACT flag: I = FALSE or TRUE
| Step 0 Filter out special operahds:

If £=255then (if F = D&: (w “"0 or v=1) then "Invalid" ...unsigned or negative e
else "Unchanged" .+ o or NaN.}

If E = 0 then (if /' = O then "Unchanged" ...20
else if w=0 or o=1 then "Invalid" ...denormalized warning
or negative x.
elze "Normalize" ...positive

. . denormahzed x.)
else if g=1 then "Invalid" ... negative x.
else "Operate” ... calculate vz .

Exits: : ' '

"Invalid”: return vz := NaN created for the occasion, and raise INVALID flag

"Unchanged': return vz =z .. %0 or+w=or NaN.

"Normalize": R '

o Y= ... & constant

X =
¥ = Vae-y via "Operate" called ag a subroutine.
Z:=Y-96-2%8 ... y/ 2%
return vz := z end "Normalize'

“Operate’: continue to step 1 with finite normal positive x.

Step 1 Save, reset and initialize:

=7 ... save INEXACT flag /. '
'r = R R =0 .. save roundmg mode and reset to round—toward—zero.
= l_X/B_]+ (127 2R —~ 320000) ... drop bit shifted off X.
. now magically y approximates \f:E to almost 5 sig. bits.

Step 2 Heron's rule twice:

2:= y+x/Y ...i0 chopped ﬂoatmg-pomt arithmetic :
Z = Z (2% - ¥ 3150) .z approximates Vz to over 11 sig. bits.
yi= z+ :c/ Z ... in chopped fAoating-point arithmetic
Y=Y - 2 y approximates vz to within 1 ulp.

.. Most ~/T programs do no better.than this, but we must
persevere to get \/% correctly rounded and ifr =10 (round—to-nearest)
accurate within 1/2 ulp.

-4-

Step 3 Twiddle last bit using integer add and shift:

f = FALSE ... reset INEXACT flag I.
- %:= z/Y ..chopped quotient, possibly inexact.
Itnot/ then (if z = y then skip to Step 4 ... v is exact

i:= TRUE ...V is INEXACT.
Iftr >01then(Y :=Y + 1... round-to-nearest ‘

ifr = 11thenZ := Z +1 ... round-towards +)
Y =l(Y + 2) 2] .. logical right shift has left-rnost bit D.

Step 4 , o
' R:=r ;[:=1..restore rounding mode and INEXACT flag
return vz :=y end.
Alternative to Step 3

Step 83 Twiddle last bit using floating add:

I := FALSE ... reset INEXACT flag /.
Z := /Y ... chopped quotient, possibly inexact
Hnot/ then (if z = y then skip to Step 4 ... Vz is exact

o ‘else Z := Z -1 ... special rounding)
i:= TRUE ... V7 is inexact. :
Iir >01then{Z :=Z + 1...round-to-nearest

. IIr = 1lthenY:=Y + 1... round-toward + w,)

¥ ;=¥ + 2 ... chopped sum '
Yi=Y -2 . y:=(y+2)/2is correctly rounded.

Although stated in terms of SINGLE precision, Step 3 is the way to produce
¥y = Vz correctly rounded te DOUBLE, or any other working precision, pro-
vided the previous approximation ¥ differs from vz by less than 1 ulp {one unit

in the last place carried) of the desired precision. The proof that Step 3 works

correctly is an exercise in elementary inequalities with integers.

Testing . :
The DEC PDP-11 and VAX single-precision floating-point formats so closely

resemble the proposed 1EEE format that the foregoing algorithm could be tested

on those machines. However certain significant differences demand attention:

i} DEC's exponent'bias is 129 instead of 127 for normal numbers; therefore
the constant (127 2% ~320000) in Step 1 must be replaced by
{129 2% - 320000). - '

ii) DEC reserves only the exponent £ = 0 for z = 0 or NaN, omitting denor-
malized numbers and -0; also £ = 255 is a normal exponent so there is no

=, Hence Step 0 must be shortened by omission of the statements that test
for £ = 2550ru = 0.

else ¥ := Y -1 ... special rounding)

N

. early as 194%:

-5-

ifi) The VAX swaps the first and last 18 bits of floating-point numbers when they .
are loaded into registers, so a compensatory swap must be inserted before
and after integer and logical operations that affect the F-field. Also, the
VAX lacks the PDP-11's chopped floating-point arithmetie, so the foregoing

.algorithm's floating-point operations must be effected in double-precision
and then chopped back to single, thereby sguandering the algorithm’s
speed. :

iv) The DEC machines lack the INEXACT flag /' used in Step 3 to decide how to
increment Y and Z; instead the division z. = z % must be carried out to
double-precision, 58 sig. bits, using the first 24 for z and the last 32 to indi-
cate, if not all zero, INEXACT. '

Despite these differences we have tested the algorithm by running it on a
VAX which happened to be available. The test compared SQRT(x):= \f;:- calcu-
lated by the algorithms above with a correctly rounded vz obtained from a -
double-precision (586 sig. bit) calculation of vz by rounding off its last 32 bits in

accordance with the specified rounding mode R. The values chosen for r were -
all 2% = 18777218 consecutive arguments r between r = 1 and z = 4-27%2

inclusive, plus the set of squares z = 1,4, §, 16,25, ..., 40957, 40962 The test

also checked that the inexact flag / correctly indicated whether or not vz was

exact. The test was prograrmmed in € by Miss Heidi Stettner. No discrepancies

were found. To test the test, it was re-run on the fast SINGLE-precision SQRT{x)
program that we normally use on the VAX, and all instances were found where

this p:rl'ogram's error exceeds 1/2 ulp. [One ulp is one unit in the last (24th)

place. T _ Co

" General Comments

The foregoing algorithr was derived from one] developed in late 1982 for
the IBM 7090 at the University of Toronto, and used subsequently for an IBM
7094, a CDC 6400, a DEC PDP-10 and our present VAX at the University of Califor-
nia at Berkeley. A similar but slightly slower algorithm was devised indepen-
dently by Hirondo Kuki in 1963 for the IBM 7094 at the University of Chicago and
used also on the IBM 7040. The algorithm is economical only when division is
fast. ' . ' '

When division is slow but multiplication is fast, a better idea is to fadapt the
“Reciproot” algorithm that ran on the Ferranti-Manchester Mk. I perhaps as

Given >0 choose any wug>0 and for n = 0,1,23 --- set
Up 41 = max (u, , -?-Lu.,; - —é-n:u,?) until %, converges to 1,/Vz (which it
does quadratically); finally Vz := (1) =.

When multiplication and division are both slow, /T may be best calculated
digit-by-digit using the "formal method" sometimes taught in high schools. This
method requires either a remainder or two exira bits of vz to determine
correctly the round-bit and sticky-bit needed to round vz and set the INEXACT
f]/qg as required by the standard. In fact, after calculating the first 28 sig. bits of

x we must conclude that all subsequent bits are zeros just when the last 14
bite of the first 28 are all zeros. That no such statement could be true if "26"
were reduced to "25" follows from the square root of 1.000...01. But on most

-B-

current machines an algorithm that exploits the remainder is probably best;
such an algorithm, provided by Mr. George Taylor, is appended below. It too has
been programmed for cur VAX and tested as described above.

Acknowledgements:

Work reported herein was supported in part by the U. S Deparhment of
Energy, Contract DE-AT03-76SF00034, .. Project Agreement DE-AS03-
79ER10358, and by the Office of Naval Research, Contract N0O0014-76-C-0013.

Annotated Bibliograpby

Concerning the Proposéd'IEEE Floating-point Standard:

J. Coonen (1980) "An Implementatlon Guide to a Proposed Standard for

Floating-Point Arithmetic” in. "Cornputer" Vol. 13, No. 1 (Jan, 1980) pp 88-79.
Published by the IEEE.

J. Coonen, W. Kahan. J. Palmer, T. Pittman, D. Stevenson (19'?9) "A Proposed
Standard for Binary Floating Point Arithmetic", Draft 5.11 in ACM SIGNUM
Newsletter Special Issue, {Oct. 1979) pp. 4-12.

W. Kahan, J. Palmer {1979). "On a Proposed Floatmg-—Pomt Standard”. Ibid. pp.
13-21.

Concerning conventional square root soffware:

W. J. Cody, W. M. Waite (1980). "A Software Manual for the Elementary Funec-

tions", ch. 4, Published by Prentice-H all N.J.

M. Andrews, S. F. McCormLck and G. D Taylor {1979) "Evaluatmn of functions on
m.tcrocomputers square roots” in Computer Math., Appl. 'uoL 4, pp. 358-367.
Concerning digit-by-digit square raok:

K. Hwang {1979). "Computer Arithmetic", pp. 360-411 and references- cited
therein. Published by Wiley. N.Y. .

Appendix _
_ George Taylor’'s bit-by-bit square root algorithm:

This simulates a hardware design in software. The hardware would look like this:

"OPERAND X

SHIFT REGIS_'I‘ERS

CHOICE

- by g s——

A-B
e
| SIGN ~ _ _V__
— e ———— & ——__F _|
e e e e e e i e —— — —_

But the program below uses 32-b1t reglsters for all variables except the
rounding mode R, the inexact flag I, and the boolean variable Roundbit. The
hardware would use registers which need to be no wider than the desired
result’s unpacked fraction plus 3 bits.

The second loop in Step 2 shifts the S register rather than the {S,T) register
pair. The last iteration of the second loop as written requires a 25 bit subtrac-
tion. Special coding for this step can reduce the width to 24 bits, which is the
tength of the result’'s unpacked fraction.

Step 0 Tilter out special operands as is done above to ensure that
x is positive, normalized and finite. 1.0 £ fraction of z < 2.0

Step 1 Initialize ' - : -

Z =X ao 0080 00004 ... extract last bit of exponent
Y :={X/2] am 7F80 000046 ... retain half of biased exponent

if (Z = 0) then § |
' Y := Y 4+ 1FB0 000044 ... unbiased exponent is odd, so add 83
T:=((2X)or 0100 oooo,s)} oo Q1FF FFFFm l

else | '
Y := Y + 2000 0000435 ... unbiased exponent is even, so add 64
T := X xw OOFF FFFF m;
S =0
ft (S,T) left 9
S=8-1
@ :=5.. fir st. bit of result must be "1"

Step 2 Inner loop

repeat 12 times (26 for double, 32 for extended)
shift (S.T) left 2
P=8-§Q
g:=2¢ -1
If(PZO)thenS = P; Q = q +4

=losd - A

repeat 12 times (27 for double. 32 for extended):
P:=5 - - 1..o0ne's complement subtraction
Q:=24d
if(P20)thenS:=4P +3;Q:=¢ +1
else § := 48

Step 3 Round and set the Inexact ﬂag as appropriate

Rouﬂ':ibzt := @ aw 0000000146
Q:=1q/
if (Roundbzt e« (S >0))then

;= TRUE ... set the Inexact flag
if (R=11)thenq :=q + 1 ... round to +=

if (Roundbif wa (R = 10)) then @ := § + 1 ... round to nearest
Step 4 Pack result

Y:=Y oa (@ am OO7F FFFFyg)
return Vz =y

o

