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Square Root Without Division

 

The objective is to compute  Y := 

 

√

 

X  for a given positive  X  without using division operations.  
All schemes for doing so exploit approximations  r  to  R := 1/Y = 1/

 

√

 

X .  Such approximations 
can be improved arbitrarily,  limited only by roundoff,  via the  

 

Reciproot Iteration

 

 :

Given a not too bad approximation  r 

 

≈

 

 1/

 

√

 

X ,

a better approximation is  r := r + (1 – Xr

 

2

 

)r

 

/

 

2 .

“ Not too bad ”  means  0 < r

 

√

 

X < 

 

√

 

3 ,  and then  r  has almost twice as many correct sig. bits as  r  

has;  r

 

√

 

X – 1 = –(r

 

√

 

X – 1)

 

2

 

(r

 

√

 

X + 2)

 

/

 

2 .  Each quadratically convergent  Reciproot  iteration costs 
two add/subtractions and three or four multiplications,  depending upon how multiplication by  
1/2  is implemented.  Repeated iteration until  R  has been approximated adequately yields an 
adequate approximation to  

 

√

 

X = RX  too at the cost of another multiplication.  Combining this 

multiplication with the last iteration for  r  to improve  y := rX  to  y := rX = y + (X – y

 

2

 

)r

 

/

 

2  saves 
a multiplication and,  if  r  is accurate enough,  provides a final  y 

 

≈

 

 

 

√

 

X  almost correctly rounded.

Quadratically convergent  Reciproot  iteration costs more per iteration than a linearly convergent 
iteration that uses one fixed approximate  r 

 

≈

 

 1/

 

√

 

X  to improve each of a sequence of unrelated 

approximations  y 

 

≈

 

 

 

√

 

X  to  y := y + (X – y

 

2

 

)r/2  at the cost of two add/subtractions and two or 
three multiplications per iteration.  Provided  r  is close enough to  1/

 

√

 

X  and  y  is close enough to  

 

√

 

X ,  the new relative error  y

 

/

 

√

 

X – 1 =  –(y

 

/

 

√

 

X – 1)

 

(

 

(y

 

/

 

√

 

X – 1) + (y

 

/

 

√

 

X + 1)(r

 

√

 

X – 1)

 

)/

 

2  will 
be smaller than the old;  each repeated iteration will gain about as many correct sig. bits for  y  as  
r  has.  This linearly convergent iteration makes sense when the ultimate accuracy desired is not 
much better than has already been achieved in  y .

A first approximation  r 

 

≈

 

 1/

 

√

 

X  is constructed via a small table-look-up.  Except for special cases 

like  X = 

 

∞

 

 ,  X = 0  and subnormal  X ,  IEEE 754  formatted  X = 2

 

k

 

(1 + ·f)  is stored in a 
floating-point word whose fixed-point interpretation is  Z = (k+B) + ·f ,  where  0 

 

≤

 

 ·f < 1  and  B  
is the exponent bias,  an integer like  k .  A fixed-point constant  C+·g  slightly less than  3B/2  can 
be so chosen,  with integer  C  and fraction  ·g  lined up around the  “ binary point ”  just like  Z ,  
that a shift and subtract produce the fixed-point word  S := C+·g – Z/2  whose floating-point 
interpretation is the desired first approximation  r  good to at least three sig. bits.  For instance,  
when  B = 127 ,  set  C+·g := 190.451  to keep the relative error in  r  within  

 

±

 

0.05 .

For better accuracy,  some bits of  ·g  should be taken from a table indexed by a few bits of  Z  
including the last bit of  k+B  and the leading few bits of  ·f .  Every additional bit of index more 
than doubles the memory bits needed by the table and contributes about one additional sig. bit to  
r ,  whose accuracy will be multiplied by subsequent  Reciproot  and other iterations.  The optimal 
values for  ·g  depend somewhat upon the way in which  r  will figure in subsequent iterations.  
Tricky details,  including how to get  

 

√

 

X  correctly rounded at the end,  must be left to another 
occasion.
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function e = rcprtplt(g, N)   % ...  written for  MATLAB
%  To estimate  1/sqrt((1+f)*2^j)  for  j = 0  or  1  and  0 <= f < 1 ,  try
%  the approximation  r = (3/2 + g - j/2 - f/2)/2  for some  0 < g <= 1/2 .
%  Rcprtplt(g)  plots r ‘s relative error as a function of  g  at  2^N  points.
%  ( By default,  N = 8 .)  A good value for  g  is  0.451 .   ((C) W. Kahan)
if  ( g <= 0 | g > 0.5 ) ,  g,  error('Keep  0 < g <= 0.5 .'),  end
if  nargin < 2 ,  N = 8 ;  end
N = round(N) ;        % ...   Make sure  N  is an integer.
n = 2^(N-1) ;  f = [0: n]'/n ;  x = 1+f ;  x = [x(1:n); 2*x] ;
r1 = 0.5*( 1 + g - 0.5*f ) ;
r0 = r1(1:n) + 0.25 ;
r = [r0; r1] ;        % ...   r approximates  1/sqrt(x)
e = r.*sqrt(x) - 1 ;  % ...   1 <= x = (1 + f)*2^j < 4
plot(x, e, x, 0) ;
title('Relative error  r*sqrt(X) - 1') ;
xlabel('X') ;
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Reciproot Iterations  of  Higher Order:

 

For an iteration of order  k 

 

≥

 

 2  let  q

 

k

 

(z)  be the polynomial in  z  obtained from the first  k  terms 
of the  Taylor  series

   (1 – z)

 

–1/2

 

  =  1 + z/2 + 3z

 

2

 

/8 + 5z

 

3

 

/16 + 35z

 

4

 

/128 + 63z

 

5

 

/256 + 231z

 

6

 

/1024 + 429z

 

7

 

/2048 + …

so that  q

 

k

 

(z) = (1 – z)

 

–1/2

 

 

 

±

 

 

 

O

 

(|z|

 

k

 

) .  Then the iteration that replaces  r 

 

≈

 

 1

 

/

 

√

 

X  by  

r :=  r·q

 

k

 

(1 – Xr

 

2

 

)  =  1

 

/

 

√

 

X  

 

±

 

  

 

O

 

(|1 – Xr

 

2

 

|

 

k

 

)

 

/

 

√

 

X 
is an iteration of order  k .  Implemented in floating-point,  each such iteration costs  k+2  
multiplications and  k  add/subtractions.  This implies that the iteration’s efficiency is  

 

ultimately

 

 
best when the order  k  minimizes

 

(

 

 time for  (k+2) multiplications  and  k  add/subtractions 

 

)

 

/

 

log(k) ,
which occurs when  k  is  2,  3  or  4 ,  depending upon the relative costs of multiplication and 
addition/subtraction.  For example,  one iteration with  k = 9  replaces relative error  1 – r

 

√

 

X  by  

1 – r

 

√

 

X 

 

≈

 

 

 

±

 

O(|1 – r

 

√

 

X|

 

9

 

)  at the cost of eleven multiplications and nine add/subtracts;  but two 
iterations with  k = 3  make a roughly similar reduction in the relative error  ( if it’s small enough ) 
at the lower cost of ten multiplications and six add/subtractions.  However,   M. Keynes  said 
“

 

ultimately

 

  we are all dead”;  so the optimal order  k  may be determined by other considerations 
when the relative error in  r  is not very tiny.  Anyway,  order  k > 4  seems implausible.

 

Further Reading

 

Articles about computing,  rounding and testing square roots will appear in the  Proceedings of 
the 14th IEEE Symposium on Computer Arithmetic  to be held in  Adelaide,  Australia,  14-16 
April 1999.  Until then many of these articles can be found posted at

http://www.ecs.umass.edu/ece/arith14/program.html


