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For any inéeger M 2 0 and constant h > 0 , let F{(M) be the sum of
the infinite series _ | ,
F(M) := 5 h/(k? - %) =. 5 (h/(k-3% -h/(k + %) )
odd k > 2M ‘ odd k > 2M

2h/(4M+1) - 2h/(4M+3) + 2h/(4M+5) - 2h/(4M+T) + ...

[H

hn/2 - 2h( 1/1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...
+ 1/(4M-7) - 1/(4M-5) + 1/(4M-3) - 1/(4M-1) ).

I

( Although F(0) = hn/2 , this series is a slow way to compute m ;

for a series that converges faster see’ V. Adamchik and 8. Wagon
" A Simple Formula for m " in Amer. Math. Monthly wv. 104 #9, Nov.
1967, pp. 852~855.) - '
F(M) can only be approximated by a sum F.(M) - F(M+N) of some finite
number N of terms: : ' ;
F(M) - F(M+N) = : h/{ (ZMmn)-1)2 - ¥% )
- 15nfN .

Then the remainder
F(M+N) = I h/tk? - Y
o odd k > Z2M+2N :
can be estimated with the aid of the following elementary observaticns:

2F(M) > £ h/(k? - %) = h/{ 2M+1 - %) , and
: k » 2M .. . :
2F (M) < z h/(k2 - %) = h/{ 2M - ¥
k 2 2M . :
Iin short, ‘ .
h/(4M+1) <« F(M) < h/(4M-1)
The approximation ' ' .
S F(M). =~ r(M) := h/{4M) !
is in error by.less ( actually far less ) than , )
h/(4M-1) - h/{(4M) = h/({4M~-1){4M)) = h/{{4M~-¥)? - %) .,

Consequently the error in approximating F(M+N) -by r(M+N) is rather
tinier than the last term h/((2M+2N-1)2 - ¥%). ‘added to F(M)~-F(M+N)
Therefore we could stop the summation when that last term contributed
negligibly to the sum, and then obtain F(M) =~ F{M)-F(M+N) + r(M+N)
with negligibly more additional error. T : '

. How big must N be before the last term h/((2M+2N-1)2 - %) adds a

‘negligible amount to. F(M) ? That depends a little upon h . We shall
use h := (4M+1) (4M+3) , so that F(M) = h/(4M). =4M+4 + 3/{4M) , and
choocse M := 2"n - 2 to get F(M) = 2"(n+2) - 4 slightly sma}ler than
a power of."2.. Then half an ULP. of "F(M) must be about leF (M)
where & :=13+(4.0/3 - 1) - 1| 1is an ULP of numbers between .1 and
2 .. The last term added falls below F(M)e/4 when _ : :

h/ (2M+2N-1)2 < ¥eh/ (4M) -, i.e. N > 2¥(M/g) - M, roughly.

Actually the approkimation"F(M) = r{M) = h/{(4M) is much closer than
was deduced above. To get a better estimate of the error we consider
- the following easily proved inegqualities between integrals:



-

If f(k) >0 , fr(k} <0 and ikl > 0 for al k 2 0, then ;
00 o oo
Wf (M) + flky dk < F{M) := 2 fik)y < fiky dk
M k=M : M-
The bounds differ by ' :
M .
fik) dk - #f(M) = ~f'(M)/8 roughly.
M-% '
In our case we have fik) := h/{{2k+1)2 - 4) = h/ (2k+%) - h/(2k+3/2)
an -f*{M)/8 = YV (2M+1)/ ((2M+1)2 - %)2 = wh/ (2M+1) 73 and
o .
© f(k) dk = ¥h In((4M+1)/(4M-1)) = h/(4M) + {1/3)h/ (4M) "3 +
50 (M) - 11h/(192 M"3) < F(M) < r{M) + h/(192 M"3)
Euler’s summation formula ( 23.1.32, p. 806 of "Handbook of Math.
Functions ..." ed. by M. Abramowitz & Irene Stegun (1564) } tells us
00 (oo
: ftk)y = fix) dk + frM-%)/24 - 7 frr(M-3%)/5760 +
k=M I M-%
= ¥h la((4Me1)/(4M-1)) - (AM/3)/(4MP - %)2 - O(1/M"5)
. h/(4M) - h/(4M)"3 + 5h/(4M)"5 - 61h/(4M)"7 + O(1/M"9)
so actually F(M) = r(M) - h/{4M)"3 + O(1/M"5) , which means for

big M that the error in r (M) is about - 3/11 of the error_bound.

By these means or others it is possible to show that asvmptotically

F(M) --> h I gin}/{4M)"(2n-1) as M --> ® , where
. n>0 _
gin] := (1 - 3 47(n-j) Comb{2n-1, 23j-2} glJ] Y/ (2n-1)
O0<j<n
n: 1 2 3 4 5: 6 27 8 9
g[nl: 1 -1 5 -1 1385 -50521 _2702765 2199360981 19391512145
gl1l0] = -2404879675441 and glnl  grows super-exponentially,
Because h = (4M+1) (4M+3) -, we then find that
FI(M) --> 4M + 4 + %/M - %/M2 - 3/{4M)”3 + h 2 ginl/(4M) " (2n-1)
‘%: . n>2 " .
To keep t#e error committed by neglecting h g[n]/(4M) " (2n-1) and
subseguent terms below &/ (4M) , which is about half an ULP of the
fractional part of F(M) , we must keep M bigger than roughly

mi{n) := % { ginl/e )" {(1/(2n-4})

.......................................................................



To keep the error bound for F(M)-F(M+N) + r(M+N) below about %eF({M)

we must choocse N to satisfy 11h/ (192 (M+N)"3) < Y4eh/(4M) , which
means roughly N > (¥M/&)"(1/3) - M . This is less onerous than the
previous estimate N > 2¥(M/e¢) - M, but still pessimistic.
However, the errors due to rounded summation also accumulate

significantly if not attenuated by Compensated Summation, or else by
summing the series backwards (small terms first instead of big terms
first). Compensated is more accurate than backward summation, and
regquires no advance knowledge of the number of terms to be added.

Compensated summation can. interact with the criterion for terminating
the summation process in such a way as to diminish substantially the
nunmber of terms summed. The simplest stopping criterion is

" Stop when F(M)-F{M+N) = F{M)-=F(M+N-1} ."
With ordinary summation this takes effect as soon as the last term
added falls below half an ULP of F(M) . With compensated summation,
- this criterion can take effect shortly after the last term added falls
below one ULP- and F{M)-F({M+N-1} gets rcunded up by almost half an
ULP, because then F(M)-F(M+N) gets rounded down by almost half an
ULP to match F(M)-F{M+N-1) . 1In short, with that simplest stopping
criterion, compensated summation tends to stop with about 29% fewer
terms than ordinary summation. But that criterion is too simple; it
doesn’t stop until after vastly too many terms have been added.

A criterion that stops after fewer terms could be something like

" Stop when F{M)-F{M+N) + r{M+N) 2 F(M)-F(M+N-1} + r(M+N=-1) ."
This comes to mind because F{M)-F(M+N) + r{M+N) should be a monotone
decreasing function of N -in the absence of roundoff. But when N

increases by 1 the decrease 1s a tiny fraccion ( = (18/11)/(M+N) )
of the error bound. To see why, consider
LHS - RHS = : : :
' ( F(M)-F{M+N) + r{M+N) ) - ( F(M)-F(M+N-1) + r{M+N-1} )}

2h/ (AM+4N-3) - 2h/{4M+4N-1) + h/ (4M+4N) - h/ (4M+4N-4)
~24h/{ {4AM+4N) {4M+4N~1) (4M+4N-3) (4M+4N-4) }

-(3h/32)/ (M+N-%) "4 < -0 : -

and compare this with 0 < r(M+N}) - F{(M+N} < (11h/192}/(M+N)~3
Therefore the last criterion would stop much too soon. Morecver it
costs too much because it needs  r(M+N) computed toc often.

T0oH oY

Let us apply a similar criterion after several terms have been added:

 F(M)-F{M+N) + ri{M+N) ) -. { F(M)-F(M+K) + r{M+K) )}
~ - (3/32){ h/(M+K+%) "4 + h/7{M+K=3/2)"4 + ... + h/(M+N-%)"4 )
M+N ‘ '
= - (3/32) h/x™4 dx = -(1/32)( h/{(M+K)"3 - h/(M+N})"3 ) ,
M+K :
~ —({11/192)h/{M+N)"2 when N-K = 0.415 (M+K)
In other words, if F(M)-F(M+K) + r{M+K) is not accurate enocugh yet,
add N-K = 14INT{ 0.415 (M+K) ) many more terms to get an improved
estimate F(M)-F{M+N) + r(M+N) and stop when it is negligibly smaller
than the previous estimate F(M)-F(M+K) + r{M+K) . We might expect
this to occur when (11h/192)/(M+N)"3 = Y%eh/(4M) , which makes N of
the same order of magnitude as (¥M/e)”(1/3) - M . Unfortunately, we

canncot know this until it has happened twice, which adds something of
at least order 0.415 M to N . When M is so big that M > Vv (¥%/g)
the approximation - F(M) = r(M) "1s already accurate enough to preclude
the need for summation. o ' : .



Compensated Summation:

e e e i

When we try to compute the sum s =Y + X We actually get a rounded
sum S =y + x - & in which & 1is the rounding error committed when

vy + X was rounded to fit into the register that holds S . Here is a
picture of the digits, assuming |v| 2 [x| and eight sig. digits:
L YYYYYYYY .

+ Pe v ooved

ss5s8555800 = true sum 8

SS88S8S888™T = rounded sum S5
There are ways to recover the digits of & lost to roundoff. The
simplest way, valid only for reasonably well rounded binary ( and
TEM’s /360-/370-/390 chopped hexadecimal arithmetics ) goes thus:

Ensure |v| 2 |x| by swapping if necessary. Then compute in turn

S := vy + x rounded ; actually S =y + X - 5
¢ := (y - 8) + x rounded; actually ¢ = 0
. DO NOT DISREGARD PARENTHESES !
No rounding error oOCcCurs during the computation of ¢ . This can be

proved by applying the fellowing

Theorem: If p» and q are floating—point numbers in the same

”””””””” floating-point format, and if .% < p/g £ 2, then
p-q is representable exactly in that floating-point
format unless it underflows - ( which cannot happen if

arithmeric conforms to IEEE Standards 754 and 854 ).

The proof of this theorem 1s not difficult, and then its application
to the computation of ¢ = & is just a matter of case study, the
cases being -1 £ x/y £ -4, 4% < x/y <0, and 0 £y/x $1 . The
foregeoing computation of - ¢ = & malfunctions for correctly rounded
decimal arithmetic, as on . H-P calculators,  which requires a more
complicated method; the simplest method fails on examples like

v = x = 0.999...996 . We shall stick with correctly rounded binary.

The recovery of rounding exrrors of summat ion becomes important when we
have to compute a sum sN := x0 + X1 + %2 + %3 + ... + xN for a huge
nqumber N of terms  xj . When x1 > %2> ... > xN > 0 , .which is the
simplest case and applicable to the infinite series studies above, the
N rounding errors can cbscure almost N ULPs of sN if nothing is
done to compensate for them. Summing in reverse order, smaller terms
first, accumulates less roundeff but in extremely unlikely worst
cases) it can still accumulate to almost ¥N ULPs. Compensated
Summation gets rid of most of those N rounding errors thus: ‘

Replace the simple program

s :=.x0 ; for 3 =31, 2, ... N in fturndo s := 8 + X3 i
s := x0 3 c =0 ; : ) _
fgr 3 =1, 2, 3, ., N in turn Go !
: { ¢ := ¢+ xj ; o©lds := 8 ~
s =t + o0lds ;: ¢ := {(olds - s) + € } |
The rounding error that occurs in t := C + xj - can be ignored because
it typically amounts to less than half an ULP of xj . The error in

5 := t + olds is recovered in Cc O be added the next  -time around.
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