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Accuracy in numerica.1 computation is not an end i.n itse1.f, 

but a means to at.her ends, Only when those ends are not clearly 

in view is a~curacy an attractive expedient, if it is achievable. 

at all. 
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The Table-Makers' Oil errina 

"It is. con.fidently believed that the 
cases where the error exceeds ±0.51 
units of. the. last decimal could be 
counted onthe fingers of one hand; 
those that are known to exist form 
an. uncomfortable trap for any would
be plagiarist." 

Cha,mbers 1.s· Shorter Six-Figure 
Mathematical Tables (1959) 
L.J. Comrie 

The ideal computat:i.on would produce correct:)_y rounded numerical. 

results in error by at most ±0.5 ulps (Units of the Last decimal Place 

cited). But achieving this ideal can be more than expensive; it may b.e 

impossible. Consider, for example, the computation t6 13 significant 

• decimals of 

.1/3 3 + 1/5 3 + 1/7 3 + • • • + 1/(2n+l) 3 + • '· = • (7/8)1;(3) -1 

where l;(s) = '£
00 

n-s is Riemann's Zeta-function. Working to 15 signi-
1 

ficant decimals yields a value 

0,0 51799 79026 464 so ••• , 

uricE:r-tain by 1 in the last dC:cimal cited a Should the 13 th significant 

figure be rounded up or down? Rather than guess we recompute wo~king to 

18 significant decimals, and get 

o.o 51799 79026 464 49999 ••• , 

uncertain by 2 in the last decimal cited. Should we try again, carry-

ing more figures, or should we conjecture that the true value is precisely 

o.o 51799 79026 464 s? 



Can this conjecttire .be decided more eas:ily than another more .famous 

conjecture* about the Zeta-Junction? 

This dilemma, familiar to the table-'makers of old, now afflicts 

their descendants who write numerical subroutines intended to serve other 

users of the electronic computer. 

The dilemma persists when "correctly rounded" is. replaced by the 

ostensibly less demanding phrase "correctly chopped" .. For example, the 

t value of 

exp(TT/163) ; 262 537L,1 26407 68743.99999 99999 99250 072597,,, 

cannot be correctly chopp.ed to 18 significant decimals until 31 are 

known; anybody who computed just the first 20 digits, then the first 25, 

then the first 30, might think he had discovered a new integral value 

exp(1r/ii) _ to join with exp(11/6) ; 1 and exp(11/:i) ; -1. 

The dilemma is latent in any demand that the computed approximation·: 

a to a number x be obtainable from some rule, a; r(x), which maps 

the cont;inuum onto a discreteset, as. do the rules for· correct chopping 

and correct rounding (see Knuth (1969) p. 197 for one definition of the 

function r (x) ; round(x,p) = "x rounded to p digits"). Such a mapping 

r effects a partition of the continuum into non-overlapping intervals 

with who.se boundary points x must be compared in order to determine 

r(x), and that comparison may defy effective computation (cf, also 

Aberth (1971) and references·cited there). However, while it would be 

impractical to insist upon none but disjoint partitions r, it would be 

unwise to relinquish them entirely. • 

* A propos of Ri_emann '.s Hypothesis see Rosser,_ Yohe and Schoenfeld (1969). 
As for (7/8)1:;{3) -1, the value given by H.T. Davis in Tables of the 
higher mathematical functions, vol.. II (1935) is o.o 51799 79026 464 499972,., 

tThis value is given by.D.H. Lehmer in M.T.A.C. 1 (1943) p. 31. 



. . 

Why should we not, when specifying how accurate some computer sub'-

routine ought to. be, merely relax. the. error tolerance "±0. 5 ulps'' to, 

say, "±0.51. ulps"? Because doing so would, for example, permit .the 

6-decimal approximations cos(o.358) i o.936600 and cos(-o.358) i o.936599 

to be supplied in place·of cos(±o,358) = o.936599 499881 ••• , thereby 

abandoning the sign-symmetry of the cosine function. For another example, 

im.agine a function q,(x) known by everyone who needs it to be strictly 

monotonic, and consider this 6,--.decimal tabulation 

X q,(x) to 6 dee. True q,(x) 

o.999998 o.700002 o.700002 3501-,3 •,. 

o.999999 o.700003 o. 7000.02 !19002 • .-. 

1. 00000 o.700002 o.700002 5.0997 •• , 

1.00001 o.700022 0., 700022 s•5007 ••• 

which forsakes qi' s monotonicity. Deviations· like thes.e from familiar 

relationships such as sign-symmetry, monotonicity, periodicity (e.g. of 

• f(x) = sin 1Tx), integer values (e.g. log 1 = 0), inequalities (e.g. 

cos x .:5. 1, and cosh x,:. exp x > sinh x > x when x .::_ 0) and certain 

identities (e.g. if "" Ix I,· and log 1 o (lOn) = n for integers n .::_ 0) 

can create confusion, especially during program de-·bugging, out of all 

proportion to the small end-figure errors that cause the deviations. A 

departure, from those relationships which persist after elementary func

tions are rounded correctly, cannot be excused by observing that some 

other relationships (e.g. (h) 2 = x, cos 2x + sin 2x = 1, tan x = 

sin x/cos x) can only be approximated to within one or two ulps when 

each elementary function is correctly rounded; such an excuse could be 

promoted to aa:rte blarwhe by the further observation that other simpler 



relationships like log(exp x) = x for tiny x, or exp(log x) = x for 

huge x, must be appi:oximated poorly,_ 

Fortunat;ely, most mathematical relationships which survive the 0.5 ulp 

error in correct rounding will also survive errors larger than· 0.-5 ulp 

but smaller than l ulp, and· those few relationships which might not sur

vive the larger errors can be saved with a little extra care in critical 

parts of a program. This extra care is wo,thwhile if it .costs less time 

than will the confusion and recriminations it saves. While programming 

elementary functions for the IBM 7094-II at the University of Toronto 

between 1962 and 1965 (see my 1968 notes) I found that extra care cost 

less than one month's extra work per program, and slowed the program by 

less than 10% if at all. Moreover, much of the extra work was devoted to 

proving, mathematically first and then by running tests on data, that the 

program performed as well as I claimed. The kinds of claims I made are 

illustrated by the programs 

COS , COSPI , SIN, ·SINPI 

which were written to compute trigonometric functions: 

COSPI(Y) = (l+c)cos(1rY) 

SINPI (Y) = (1 +E:) sin (iry) 

cos(X) = COSPI((l+o)X/TI) 

SIN(X) SINPI ( (l+o) X/TI) 

where e: represents an error smaller than 1 ulp of the computed value, 

upon which alone e: depends, and o represents an error smaller than 

4 ulps in doubl·e-precision of the argument X, upon which alone o depends. 



Specifically, IE: I < 1. 2 x 10,..8 and loJ <. :J.0-15 on the 7094. The argument

perturbation o .is an unavoidable consequence of the. reduction of X modulo 

271; the value of 71 is represented only to double precision,· o can be 

ignored when Jxj < 271 or.when every zero of cos x or sin x lies farther 

from X than 1 ulp in single precision. And when X is .very large o can 

be ignored unless X • is represented precisely by its:stored value .because, 

when !xi > 10 8 

' 
changing X by one ulp may change sin X and 

utterly. 

The computed values satisfy familiaL inequalities 

ABS(COS(X)) :5_ 1,0, ABS(SIN(X)) < 1.0, ABS(SIN(X)) :5_ ABS(X) 

for •all X. Sign-synm1etry is preserved. SINPI and COSPI are precisely 

periodic and appropriately monotor.ic; e.g. if X • and V differ by one 

ulp then COSPI (X) - COSP (V) has the correct sign or else vanishes. • COS (X) 

and SIN(X) are similarly monotonic for !xJ < 21!, The identity 

sin 2x + cos 2x .= 1 is approximated to within· two ulps by an inequality 

ABS (1. DO - DBLE{COS (X)) **2 - DBLE (SIN (X)) 1<>~2) < 2 x 10- 8 

valid for all X. Consequently no diagnostic is issued when Ix! is huge, 

contrary to a practice common with progr&~s that violate the last inequality. 

As of May 1966 these single-precision SIN and ·COS programs were 

the most accurate available for the IBM 7094-II and 6 to 10% faster than 

any other programs claiming accuracy within 2 ulps. 



Perfection vs. Practicality 

• · "Th~ maxim 
'Nothing av.ails but Perfection-'·· 

may be spelt shorter; 
'Paralysis'." 

"The Hinge of Fate", p. 793, 
Winston S. Churchill 

Born in the shelter of the groves of Academe, my programs do not 

exemplify current commercial practice. That practi~e tends to be less. 

meticulous, according to Cody (1970}, ,v;ith .. .one outstanding exception; the 

elementary function subroutines distributed with the FORTRAN library for 

IBM's 7090-7094 and system/360 machines since 1965 have been nearly unimprov-

able. These programs, documented in 

IBM 7090/7094 IBSYS v,13 IBJOB Processor Manual, 

nrpendix B; l'orm C28-E389 

IBM System/360 E'ORTRAN IV Library Subprograms; 

Form C28-6596, 

are t_he work mostly of Hirondo Kuki at the University of Chicago, The 

excellence of his work is the more noteworthy for havi.rig been accomplished 

despite the nastiness of System/360's hexadecimal arithmetic. The software 

industry owes him a debt that could best be repaid by imitating his style, 

which is characterized by Quintilian's maxim "Ars est celare artem". 

One example, extended precision division, will illustrate Kuki's style, 

To compute a correctly rounded or chopped quotient. requires either an integer

arithmetic division-with-remainder or an explicit calculation of -approximately 

twice as many digits as are going to be kept; for example 

o.99998/o.99999 = o.99998 99998 99998 ••••• 

can be chopped correctly to five digits only after the tenth is proved not 



•. 

to be a 9. Is doing so worthwhile? This.question confronted Kuki.and 
. . 

Ascoly (1971, pp. 45..;5) when they began ;:o construct a program which pro-

vides correctly chopped quotients of extended precision (28 significant 

·hexadecimal digit) floating point numbers on. IBH System/360 machines. 
A 

Their program first approximates the quotient q = a/b by q which, 

though in error by less than one ulp, occasionally exceeds the correctly 

chopped quotient q by one ulp. Next q's remainder r = a -bq is com

puted precisely to determine whether q · should be diminished by one ulp 

to get q. That r takes nearly as long to compute as q is a price 

Kuki and Ascoly decided to pay for a correctly chopped quotient 

A different decision was made by Anderson et al. (1967) when they 

optimized the speed of hardware division in the IBH/360 model 91 by wiring 

in a quadratically conveigent iteration which isterminated as soon as the 

computed (6- or 114-hexadecimal digit) quotient q is correct to better 

than one ulp. 'In some. cases 
A q computed on the model 91 will exceed by 

one ulp the corresponding quotient q computed on all other IBH/360 models,. 

which correctly chop their quotients. For example, the assignment· 

~tores in Q a value q = l. 0 - 0. 5**24 on the model 91 and a value 

q = l.0- 0.5**23 on the other models, which is analogous to approximating 

q = o.99998/o.99999 by q = o.99999 instead of the correctly chopped but 

ostensibly less accurate q = o.99998. In general, when q ,f, q then 

Who made the better decision, Kuki and Ascoly or Anderson et al.? 

At first sight, the latter decision seems better because it is more accurate, 



but this is not so. The correctly chopped quotient q, by confining q 

to an interval narrower than orie ulp, g:i,ves more information about. • q than 

a value q which may be almost one ulp smaller than q or else a fraction 

of an ulp bigger. Anyway this difference in ac¢uracy is practically'incon-

sequential; if. all IBM/360 models divided the same way as.the model 91 few 

people would complain. Unfortunately, a programmer who exploits, perhaps 

unconsciously, the characteristics of choppe_d quotients may find that bis 

program., which he has "proved" to function correctly on a11 other IBM/360 

models, occasionally fails mysteriously on the model 91. Is the failure 

due to the differeht division algorithm? Probably not, but how long will 

he take to find out? 

The program by Kuki and Asco1y provides no surprises for anyone accus

tomed to System/360 arithmetic, and it offers anyone to -whom faster divi-

sion is important an opportunity to nearly halvE: the division time by accept-

ing A q instead of 
~ 

q provided he is confident that doing so will not have 

other less pleasant consequences. 

It is important to realize that Accuracy, unlike Virtue, is riot its 

own reward, but a means to another end. That end is achieved, in numerical 

computation, through the conservation of mathematical relationships that 

yary widely from one application to another. When we do not know which 

mathematical relationships must be preserved and which can be abandoned in 

any partieular application, we try to preserve as many relationships as 

_possible; this is what accuracy is good for. When we do know which relation-' 

ships are important we can occasionally accept less than perfect accuracy, 

thereby avoiding the table-makers' dilemma, provid.ed we _adhere to one 

fundamental principle (Knuth (1969) p,204): 

"Numerical subroutines should deliver results which satisfy simple, 
useful mathematical laws whenever possible." 



Al:ierth, Oliver (1971) 
tional Problems 
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