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The Baleful Effect of Computer Benchmarks upon
Applied Mathematics, Physics and Chemistry

Abstract:

An unhealthy preoccupation with Speed, asif it were synonymous with
Throughput, has distracted the computing industry and its marketplace from other
important qualities that computer hardware and software should possesstoo ---

Correctness, Accuracy, Dependability, Easeof Use, Flexibility,

Worse, technical and political limitations peculiar to current benchmarking
practices discourage innovations and accommodations of features necessary as
well as desirable for robust and reliable technical computation. Particularly
exasperating are computer languages that lack locutions to access advantageous
features in hardware that we consequently cannot use though we have paid for
them. That lack prevents benchmarks from demonstrating the features
advantages, thus affording language implementors scant incentive to
accommodate those features in their compilers. Itisavicious circle that the
scientific and engineering community must help the computing industry break.
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What are Benchmarks ?

Suitesof C and Fortran programs, inthe custody of industry-acknowledged
authorities, available (for afee) to test the speeds of computers.

Whom are Benchmarks supposed to serve, and how ?

Two constituencies:

1. Designers andVendors \/ of Computer Hardware and Software,
2. Purchasers and Users /\ especially of Compilers.

Two presumptions:

1. Benchmarks are representative samples of typical workloads.
2. Other things being equal ( though they hardly ever are),
computer systems are rated according to their speeds on benchmarks.

Designers of computer hardware and software “ tune” their designs to maximize
speed on benchmarks.
Purchasers compare speeds before they buy, presumably, the faster design.

What iswrong with current benchmarks ?

Their presumptionsthat ...
( Comparethe RISC philosophy.)
1. “ Higher Speed implies Higher Throughput.”
2. “ What does not appear in benchmarks does not matter much.”

These are over-simplifications, not quite correct.
The belief that they are quite correct causes harm.
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How do you choose which computer to buy?

Compare quantifiable features like ...

Price
Speed
Memory sizes. RAM
Disk(s)
Peripherals: Graphics Display

Multi-Media Capabilities

Instrumentation and Signal Processing

Comfortable Keyboard and Mouse
Available Software: ... (alonglist) ...

Hardware Reliability and Maintenance

Do no other features matter ? What about detailslike ...

Accuracy and Range of Floating-Point Arithmetic ... Hardware
Library

Correct Handling of Floating-Point Exceptions and Special Cases
( Adaptability and Extensibility : Has the future been considered?)

( Ease of Use: How much arbitrariness must be memorized?)

?

(Only Floating-Point features lie within my competency, so | shall not explore the others here.)
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Practically all commercially significant North American
computer hardware largely conforms to

|EEE Standard 754
for Binary Foating-Point Arithmetic.

The principal exceptions, --
Cray X-MPB, Y-MP, C90, J90, IBM /370, 3090, DEC VAX, --
are mostly passing rapidly from the scene though still commercially significant.

Among conforming computers are these:

... al well-known.

IBM PC’'s and clones based upon
Intel 386 & 387, 486, Pentium or P6 processors
or clones thereof by Cyrix, IBM, AMD, TI

Apple Macintosh based upon Motorola 68020 + 68881/2 or 68040

IBM RS/6000 family, and Power PC - based descendants.
Apple Power Macintosh, based upon Power PC chipstoo.

Sun Microsystems, formerly based upon M 68020+68881/2,
currently based upon SPARC chips.

Silicon Graphics, now based upon MIPS chips.

DEC Alpha, based upon DEC 21064 and 21164 chips.
Cray T3D, based upon DEC 21064 too.

Hewlett-Packard, based upon PA-RISC chips.

But floating-point arithmetics differ despite |1EEE 754.

Which computers have better arithmetics ?
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Among IBM, Intel, Apple, Motorola, Sun, SGI, DEC, Cray, H-P, ...

Floating-Point Hardware is intrinsically and substantially
more accurate on some of those computers than on others.

The faster software libraries of
Elementary Transcendental Functions
(exp, log, cos, sin, tan, arctan, ...)
are substantially
more accur ate on some of those computer s than on others.

For example, whilethisslideisbeing prepared,

Transcendental Functions on Intel Pentium and P6, Cyrix ‘87, and on
Motorola 68040 are generally 3 dec. more accurate than on the rest.

Next come IBM RS/6000 and the Power PCs, and the Sun SPARCSs,
and the public-domain library distributed with 4.3 BSD UNIX.

Thelibrary that comeswith H-P workstations is substantially least accurate.
(According to testsby Vinod K. Stokes in 1993-4.)

Where can you obtain this kind of information ?

Not from Published Benchmarks.
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Published Benchmarks
tend to be preoccupied with

Speed

to the near exclusion of everything else.

Consequently, the Computer analog of Gresham’sLaw goes -

“The Fast drivesout the Sow,
evenif the Fast is Wrong.”

Wrong ?

Some controversial mathematical conventions are embedded in
computers, in hardware and/or in programming languages, and
persist only because little commercia incentive exists to expend
the considerable effort required to resolve controversy and attend
to details that could not affect the speed of current benchmarks.

Example:  Why do systems disagree about 35035.0D0/ 15.0 - 7007.0/3.0 ?

Example:  Why do systems disagree about whether 0.0°% = 1.0 or ERROR ?

Nit-Picky Example:  what should be done with thesignof + 0.0 ?

( This example was chosen because a smaller error than the difference between +0 and
-0 ishard toimagine; and yet the computing industry appears unable to correct such
mistakes, and bigger mistakestoo, after they become entrenched. Thus are the sins of
the fathers visited upon succeeding generations, all in the name of “ Compatibility.”)
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Where doesthesignof +0.0 matter ?
Complex Arithmetic

Example: Define complex analytic functions

g(2) = 22+z k/22+1 , and
F(2 = 1+9(2) +log (9(2))

Plot thevaluestakenby F(z2) as z runsaong eleven rays

411710

Z=ri, z=r€ S0 7@ WI0 7 d W0 -y

Z=71-€

and their Complex Conjugates, taking positive r fromnear O to near +co .

The expected picture, caled “ Borda's Mouthpiece,” shows eleven streamlines
of anideal fluid flowing into a channel under such high pressure that the fluid’'s
surface tears free from the inside of the channdl.

But a streamline goes astray when the complex functions SQRT(:--) and
LOG(:-) areimplemented, asiscustomary in Fortran and in libraries currently
distributed with C++ compilers, inaway that disregardsthe sign of + 0.0 and
consequently violates identities like

SQRT(CONJ(Z)) = CONJSQRT(Z)) and
LOG(CONJ(Z)) = CONJLOG(Z))
whenever the COMPLEX variable Z takes negative real values.

Pictures of Borda's Mouthpiece come next.
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Borda's Mouthpiece, plotted without -0
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This plot shows the streamlines of a flow of an Ideal Fluid under high pressure
escaping to the left through a channel with straight horizontal sides. Inside the
channel, the flow's boundary is free, not touching the channel walls. Without
-0, the flow along the outside of the lower channel wall is misplotted across
the inner mouth of the channel and, though it does not show above, also as a
short segment in the upper wall at its inside end. W. Kahan
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Why such plots malfunction, and avery simple way to correct them, were
explained long ago in my paper

“ Branch Cuts for Complex Elementary Functions, or Much Ado
About Nothing's Sign Bit,” ch. 7in The Sate of the Artin
Numerical Analysis (1987) ed. by M. Powell and A. Iserles for
Oxford University Press.

A controversial proposal toincorporate that correction, among other things, in
a Complex Arithmetic Extension to the programming language C has been put
before ANSI X3J11, custodian of the C language standard, by Jim Thomas of
Taligent and myself. Itiscontroversial because it purportsto help programmers
cope with physically important discontinuities by suspending alogical proposition,
“x=y " implies * f(x)="f(y) " ,

at certain kinds of discontinuities. However, regardless of that proposal’s merits,
it is barely worth discussing because ...

Little incentive exists to incur the costs of corrections
(evenif principally to documentation ) that will not
be rewarded by improved performance in current

benchmarks and a consequent commercial advantage.

If benchmarks did include the graph-plotting example above,
they could not enforce its correctness anyway.

Why not ?

Benchmarks have to be capable of running successfully on all commercially
significant computers. But older computers, which do not conformto |EEE
Standard 754, lack hardware support for - 0.0, and arethereforeintrinsicaly
incapable of plotting Borda's Mouthpiece correctly from the simplest program that
would suffice on conforming computers. On nonconforming computers,

“successful” could not mean “correct.”

10
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Every Benchmark passes through a sequence of steps:

Benchmark program, written in astandard language like Fortran or C, ...
Is submitted to acomputer’s Compiler, ...
which trandglates that program into the machine language program that ...
runs on the har dwar e under test, producing ...

results that are usually disregarded except for the time taken to produce them.

The “ Computer ” that a benchmark tests consists of hardware

running some versions of hardware-specific software, namely its
Operating System (e.g. Windows 95, or UNIX ) and a
Compiler (e.g. Microsoft C v. 7.0, or GNU-Fortran),

any of which may spoil or obscure the hardware's capabilities.

Advantageous features built into the hardware but inaccessible
through the compiler might as well be left out of the hardware.

Example: Inaccessible Floating-Point Accuracy and Range
that you may have paid for but cannot enjoy.

This needs some explanation - - -

11
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Names of Foating-Point Formats:

Single-Precision fl oat REAL*4
Double-Precision doubl e REAL*8
Double-Extended | ong double REAL*10+
( Doubled-Double | ong doubl e REAL*16)
( Quadruple-Precision | ong doubl e REAL*16)

( Except for the IBM 3090, no current computer supports either of the last two formats fully in its
hardware; at best they are simulated in software too slowly to run routinely, so weignore them.)

Spans and Precisions of Floating-Point Formats :

Format Min. Normal | Max. Finite| Rel. Prec'n| Sig. Dec.
|IEEE Single] 1.2 E-38 34E38 | 596E-8 6-9
|IEEE Double; 2.2E-308 | 1.8E308 | 1.11E-16 | 15-17
|IEEE Extended; 3.4 E-4932 | 1.2 E4932 | 542E-20| 18-21

( Doubled-Double; 2.2 E-308 1.8 E308 = 1.0E-32 =32 )
(Quadruple 3.4 E-4932 1.2 E4932 9.63 E-35 33-36)
(1BM hex. REAL*4; 5.4 E-79 7.2 E75 95E-7 = 6)
(1BM hex. REAL*8; 54 E-79 7.2E75 2.2E-16 = 15)
(CRAY X-MPetc. REAL*8| = 1E-2466 = 1 E2466 = 7E-15 = 14)

Except for Cray X-MP etc., al computers mentioned so far fully support
Single- and Double-Precision floating-point arithmetic in hardware.

The following computer chips also support Double-Extended in hardware:

Intel’s 80x86+87, 486, Pentium, P6,
and their clonesby IBM, Cyrix, AMD and TI

Intel’s 80960KB (found mainly in Embedded Systems like printers)
Motorola's 68020+68881/2, 68040 ... fading.
Motorola's 88110 (very rare)
These chips are designed to evaluate every floating-point expression
in Double-Extended regardless of arithmetic operands’ formats.

If you purchased a Macintosh, or NeXT, or Sunlll (al 680x0-based), or an
Intel-based PC or Cyrix/IBM/AMD/TI-based clone, you paid for the extra
precision and range of the hardware’s Double-Extended format.

Did you actually benefit from it?

12
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Thisthird Double-Extended format resembles the unmentionable outcasts of
India (formerly Untouchables, now called “Harijan” ) and of
Japan (formerly called “Etta,” now called “Buraku-Min” ) ;

it is preordained for dirty work.

Its 11 extrabits of precision and 4 extrabits of exponent range are intended
rarely to be seen by most computer users,

but instead to help typical applications programmers look better by rendering their

ordinary doubl e or REAL*8 results more reliable than might be expected from
usually numerically naive programmers.

This Extended format is designed to be used, with negligibleloss of speed, for
al but the ssimplest arithmetic with f1 oat and doubl e operands. For example, it
should be used for scratch variables in loops that implement recurrences like

polynomial evaluation, scalar products, partial and continued fractions.

It often averts premature Over/Underflow or severe local cancellation that can
spoil simple algorithms.

Without an Extended format, ...

» some ostensibly straightforward doubl e computations are prone to
malfunction unless carried out in devious ways known only to experts;

e matrix computations upon vast arrays of doubl e data degrade too
rapidly as increasing dimensions engender worsened roundoff.

Theideaof an Extended format has been amply vindicated by itsusein Hewlett-
Packard's financial calculators, which all perform all arithmetic and financial functionsto
three more sig. decimals than they store or display. Doing so has helped to earn the HP-
12C adeserved reputation for dependability that has kept it prominent for over 11 years
in amarket where other electronic products enjoy alifetime shorter than a Mayfly’s.

13
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Among 680x0-based Macintosh, NeXT and Sunlll, and Intel-based PCs, al of
which contain Double-Extended floating-point hardware,

ONLY the Macintosh’s compilers routinely supported Double-Extended

viathe SA.N.E. ( Standard Apple Numerical Environment ) ;
see Apple Numerics Manual, Second Edition (1988) Addison-Wesley, Mass.

Owners of other Double-Extended hardware were denied their just desertsby ...
Crippled Compilers:

No compilersfor theold Sunlll family, based upon Motorola’'s 68020+68881/2,
ever supported its Double-Extended format, so that has atrophied. Current Sun
SPARC hardware supportsonly Single and Double.

No commercially significant Fortran compiler for Intel-based PCs supports
their Double-Extended format; and only Borland's and Microsoft's C/ C++
compilers support it, the latter only grudgingly. Other C/ C++ compilersignore
“long double” orelsetreatitasif it were merely “ doubl e.”

No benchmark programs exercise Double-Extended sinceit isunavailable on
many workstations, and since “ | ong doubl e ” has no well-defined meaning.

Therefore, little incentive exists to incur the costs of
supporting Double-Extended fully since that effort will
not be rewarded by improved performance in current
benchmarks and a consequent commercial advantage.

Andyet, despiteageneral lack of support, Double-Extended confersadetectable
advantage upon computers that have it in their hardware. This advantage would be
obviousto everybody if the computing community ran

Benchmarksto Test Range, and
Benchmarksto Test Accuracy.

14
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What kinds of calculationstax Range ?

1. Three-Term Recurrences

Pri1(X) 1= an(X)-Pn(X) - bp(X)-Pn.1(X)
are used to compute Orthogonal Polynomials, Bessel Functions, Spherical
Harmonics, and many others of the transcendental functions of Mathematical
Physics. Their values usually transgresstherangesof DEC VAX and IBM hex.

arithmetics (10738 and 10¥79), often transgress the range 1073% of IEEE 754

Double, almost never transgress the range 107490 of Extended. Programs that
would work well with Extended would sometimes crash with Double, and often
crashwith DEC VAX or IBM hex. Double.

A program that crashes commercially significant machines
would not be acceptable to their custodians as a benchmark.

Crashes can be precluded by Scaling the recurrences, at the cost of defensive tests and
branches. Defensive code wastes time since it must wait for every test though it rarely
branches. Benchmarks that obliged a machine with narrower range to preclude crashes
that way would be even more objectionable to its custodian if competing machines with
wider range were allowed to omit defensive code and therefore run faster.

2. Every computer’srangeistaxed by Quotientsof Prolonged Products like
_ (a;+by) O(a, +b,) O(az+bg) O(...) D(ay +by)
(¢, +dy) O(c,+d,) O(cg+dy) O(...) O(cy, +dy,)
when N and M are huge and when the numerator and/or denominator are likely
to encounter premature OVER/UNDERFLOW even though the final value of
Q would be unexceptional if it could be computed. This situation arisesin
certain otherwise attractive algorithms for calculating eigensystems, or
Hypergeometric series, for example.

The hardware of IBM hex. and of machines that conformto IEEE 754 can
easily compute Q accurately and quickly, and so can other machines with some
fiddling; but compiled programming languages lack the necessary locutions.

( See Ch. 2 of Floating-Point Computation P.H. Sterbenz (1974) Prentice-
Hall, N.J., for abrief description of how it was donein the 1960s on an I1BM
7094.) Therefore computations like Q cannot figure in a benchmark for range.

15
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Qualifications for Benchmarks to Test Accuracy.

Some formidable political and technical obstacles must be overcome if accuracy is
to figure in benchmarks besides speed :

1. Compilers generally must support a reasonable consensus about the meanings
of different precision specificationsif these are to figure in benchmarks.

No such consensusisin sight yet, so let ustry to get along without it for awhile.
In other words, by not mentioning “ Double-Extended” nor “ REAL*10” nor
“1ong doubl e,” @t least not for the time being, an accuracy benchmark can be
eligible to run on every commercially significant computer of interest to us.

2. A benchmark must be realistic enough to deserve serious attention.

It must perform atask typical of tasks somebody may plausibly need performed
repeatedly; and accuracy should be an important aspect of the task.

3. Benchmarks must avoid the computationa counterpart of the ...

Stopped Clock Paradox: Why isamechanical clock more accurate
stopped than running? A running clock is amost never exactly right,
whereas a stopped clock is exactly right twice aday.

( But WHEN isitright? Alas, that was not the question.)

To avoid this, we must avoid results that an inferior computer might get exactly right although
superior computers get merely excellent approximations. For instance, if the perfect result were
0.5, it might be obtained exactly by accident using only low-precision floating-point while
higher precision got something “ infinitely worse” like 0.499999999999999 .

4. Input data should be composed from simple integers and fractions that will not

be mishandled by the compiler’s Decimal-Binary conversion, which might
otherwise alter the data before it reached the floating-point hardware under test.

Such alteration could cause the benchmark to disparage hardware that got the right answer for the
wrong question. Worse, tiny changes to data critically contrived to expose a weakness might
thwart that intent. For instance, acritical datum 94906267.0 treated asa REAL*4 or f | oat
constant would be changed to an uninformative 94906264.0 if not rewritten as 94906267.0 DO
or, better, expressed as 6847* DBLE( 13861 ) using only small integers we expect to use safely.

16
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Solving the Quadratic Equation

px2-2gx +r = 0 .
Thisillustrates the hazards that beset an accuracy benchmark.
Theroots x; and x, will becomputed using a “ stable” numerical procedure:

drtc( p, g, r , x1 , Xx2)
s 1= SQRT( g-q - p-r ) ;

If g>0 then t :=q + s
else t :=q - s ;
Xy :=rlt ; Xo 1= t/lp .

Datawill NOT be chosen at random. In practice, coefficients p, q, r are often
correlated; and that isthe kind of data that will be supplied exactly here:

For each chosendatum r>>1, set g:=r-1 and p:=q-1.

Consequently therootsareknowntobe x;=1 and X, = 1+ 2/p exactly.
These can be compared with the roots computed in floating-point by the procedure
Qdr t ¢ above, andtheworst errors detected will shed light upon the intrinsic
accuracy of the computer’s floating-point arithmetic.

A benchmark program Qt est, combining Qdr t ¢ with abattery of fifteen
values r chosen maliciously to reveal the worst errors possible on various
computers, was prepared for them. Results are tabulated bel ow.

( The battery of trial values r and the details of the program t est canbe
found in my Lecture Notes on the Satus of IEEE Sandard 754 for Binary

Floating-Point Arithmetic, accessible by electronic mail from my home page:
http://ww. cs. ber kel ey. edu/ ~wkahan/ i eee754st at us/ i eee754. ps .)

17
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Results from Qtest( Qdrtc) on 8-byte Floating-Point

Computer | Software | Precision | Accuracy How far < 1
Hardware | System sig. bits | Sig. bits sig. bit
IX86/87- Fortran, C,
& Pentium- | Turbo-Basic,
based PCs | Turbo-Pascal 53 32 33.3
680x0-based
Sunlll, Fortran, C
Macintosh
DECVAX D | Fortran, C 56 28 29.3
IX86/87 & MATLAB,
Macintosh MathCAD
SGI MIPS, Fortran, 53 26.5 27.8
SPARC, HP, C,
DECVAX G| MATLAB
DEC Alpha
IBM /370 etc.| Fortran, C 56 26.4 26.4
CRAY Y-MP | Fortran, C 48 24 25.3
PowerPC/Mac, NaN from NaN from
IBM RS/6000| Fortran, C 53 V(<0) V(<0)

Precision = how many sig. bits are stored in the named system's 8-byte format.
( Different systems trade off precision and range differently.)

Accuracy = fewest sig. bitsdelivered by Qdrt ¢ over the whole test battery.
( Evidently as many as half the sig. bits stored in computed roots can be wrong.)

The smaller computed root can fall short of 1.0 inthesig. bit whose positionis
tabulated last. ( In the absence of roundoff, no root would fall below 1.0 .)

These findings cry out for Explanations. How can so simplea
program get worse accuracy on some computer systems than on
othersthat store the same number of significant bits or fewer?

18
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Explanations:

Best accuracy, 32 sig. bits, isachieved on inexpensive ix86/87-based PCs and
680x0-based Macintoshes by software that evaluates each subexpression to 64
sig. bits by default in their Extended registers though it be rounded to 53 sig.
bits in Double when stored.

( These computer systems also accept, without premature Over/Underflows, afar wider range

of input data {p-p, Ku-q, K-r} than do the others, though this robustness cannot be explored by
Q est without crashing some other systems upon Over/Underflow .)

Why do MATLAB and MathCAD achieve no better accuracy on ix86/87 and
680x0 platformswith Extended registers than on the other machines without?

These programs are written mostly in C in a purportedly portable fashion with no
mention of | ong doubl e, so they store almost every subexpression into doubl e
scratch variables, thereby wasting time as well asthe Extended registers
superior accuracy and range.

Why do IBM’s /370 and 3090 etc. do worsethanthe DEC VAX D format,
though both store the same number 56 of sig. bits?

IBM’s notorious old Hexadecimal floating-point format isintrinsically as much
asthree sig. bits less accurate than a Binary format of the same width.

19
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Explanations, continued:

Whence comes NaN (Not a Number) on RS/6000s and PowerPC/Macs ?.

It arises from the square root of a negative number q-q - p-r .

However, tests performed upon input datawould find that QQ :=qg-g and
PR:=pr dosatisfy QQ=PR whenever QX est’s qq-pr <O.

This paradox arises out of the Fused Multiply-Accumulate instruction possessed
by these machines. They can compute expressions like

X £ yz
in one operation with just one rounding error instead of two. Thisisfaster and
usually more accurate than separately rounded multiply and add operations, but
sometimes less accurate, so it should not be used indiscriminately.

Is £tx=qg-qrounded and ty-z=pr, or is £x=-p-rrounded and ty-z=q-q ?

The paradox can be avoided by inhibiting Multiply-Accumulate at compile time.

Alas, doing so generally would slow these machines; therefore, their compiler
was designed to render that inhibition inconvenient and unusual, thereby
achieving better speeds on benchmarks that lack locutions to enable or disable a
Multiply-Accumulate.

Accuracy benchmark Qt est could run successfully on these machines, getting
the same mediocreresultsasdo MIPS, SPARC, HP, DEC VAX G and Alpha,
if run intheir unusual and slower Multiply-Accumulate-inhibited mode.

Would that be considered a fair test ?

Fairness raises troublesome issues for a benchmark.

What if custodians of a computer family allege Unfairness ? Letting them tweak
abenchmark glightly to render it “ fair ” lets them overcompensate in devious
ways very difficult to expose. For example, replace Qdrt ¢ by an ostensibly
algebraically equivalent procedure ...

20
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PPCrtc( p, q, r , x1 , x2 ) :
B:=pr ; @:=pr - B; |
s := SQRT( (g-q - B) - @) ; |
If q >0 then t :=q + s
else t :=qg - s ;
x1 :=rlt ; x2 = t/p

For comparison, hereistheoriginad ...

drtc( p, g, r , x1 , Xx2)
s 1= SQRT( g-q - p-r ) ;

If g>0 then t :=q + s
else t :=q9q - s ;
x1 :=r/t X x2 = t/lp .

Aside from running dlightly longer to compute @, which just vanishes for most
computer arithmetics, Q& est (PPCQdrt c) differsfrom Qt est (Qdrtc)
only by awarding the prize for accuracy to PowerPC and RS/6000, which get
53 correct sig. bitsinstead of NaN from PPCQdrt c .

Whichof Qt est (PPCQdrtc) and Qtest (Qdrtc)
do you deem the fairer assessment of computers accuracies ?

Of course, Qdrt ¢ could be replaced by a different yet ostensibly algebraically equivalent
procedure ECQdt r ¢ devised to deliver 53 correct sig. bits only on machines with Extended
registers ( but without mentioning “ Extended ” ) and to match Qdrt ¢ on all other machines.

Dilemma: Toinsist that a benchmark exist in just one version, and that it run
successfully (noNaNs!) on every computer, may cripple speed or
accuracy or robustness on computers with advantageous features others lack.

But to permit local variations may permit skulduggery that invalidates comparison.

Asitisnow, @t est (Qdrt c ) tellsussomething | think worth knowing
regardless of whether it is admitted to the ranks of industry-approved benchmarks.

21
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Solving quadratic equations is not generally regarded as so
IMPORTANT

a computation that anyone would pay big bucks for a better

way. Asabenchmark it would not likely be taken serioudly.

What computations are both important and technically
challenging enough that they could earn real money if
accomplished significantly better?

1. Solving big systems of linear equations. A-x=D.

2. Computing eigenvaluesivectors; X 1-A-X = diagonal.

Despite phenomenal improvements in numerical methods over
the past three or four decades, we still lack software that will
always solve these problems as accurately as their data deserve.

For instance, solving A-x =b can still run afoul of certain
pathologies:
Gargantuan dimension.
Unfortunate column ordering —> poor pivot choice.
Disparate scaling of rows —> poor pivot choice.
Systematically severeill-condition (near singularity).

One way to ameliorate such pathologiesisto follow Gaussian

elimination by Iterative Refinement, which is believed to cope
with them. But that is not the whole story: ....

22
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Roundoff Degrades an ldealized Cantilever

Prof. W. Kahan and Ms. Melody Y. Ivory

Elect. Eng. & Computer Science Dept. #1776
University of California
Berkeley CA 94720-1776

Abstract:

By far the mgjority of computersin use to-day are Intel-based PCs, and abig
fraction of therest are old 680x0-based Apple Macintoshes. Owners of these
machines are mostly unaware that their floating-point arithmetic hardware is
capable of delivering routinely better results than can be expected from the more
prestigious and more expensive workstations preferred by much of the academic
Computer Science community. Thiswork attempts to awaken an awareness of the
difference in arithmetics by comparing results for an idealized problem not entirely
unrepresentative of industrial strength computation. The problem isto compute the
deflection under load of a discretized approximation to a horizontally cantilevered
steel spar. Discretization generates N simultaneous linear equations that can be
solved in time proportional to N asit growsbig, asit must to ensure physical
verisimilitude of the solution. The solution is programmed in MATLAB which,
like most computer languages nowadays, lacks any way to mention those features
that distinguish better arithmetics from others. None the less this program yields
resultson PCs and old Macs correctto at least 52 sig. bitsfor all values N tried,
upto N =18827 ona Pentium. However the other workstations yield roughly
52.3-4.671log N correct sig. bits from the same program despite that it tries two
stylesof Iterative Refinement; at N = 18827 only ahalf dozen bitsareleft. This
kind of experience raises troublesome questions about the coverage of popular
computer benchmarks, and about the prospects for awould-be universal language
like JAVA to deliver identical numerical results on all computers from one library
of numerical software.

The MATLAB program used to get the aforementioned results is available by
electronic mail from the authors: ivory@cs.berkeley.edu and wkahan@cs... .
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Roundoff Degrades an ldealized Cantilever

A uniform steel spar is clamped horizontal at one end and loaded with amass at the
other. How far does the spar bend under load?

T

Thecalculationis discretized: For someinteger N large enough (typically inthe
thousands) we compute approximate deflections

Xo = 0, X1, X9, X3, ooy XN-10 XN = deflection at tlp
at uniformly spaced stations along the spar. Discretization errors, the differences

between these approximations and true deflections, tendto 0 like 1/N?. These
X; 's are the components of a column vector x that satisfiesasystem Ax=b of

linear equationsin which column vector b representstheload ( the massat the end
plus the spar’s own weight ) and the matrix A lookslikethisfor N =10:

941000
46 41 0 o0
146 410
ol-46-+41
ol-46-+41
ol-46-41
ol1l1-46-41o0
oo0o1l-46-41
000145222

O O O o
O O O O ©O

0]
0]
(0]
0]
(0]
0]

O O 0O o oo

o O O 0O O o
O O O o o
O O O O

o0o0oo0o01-=21
The usual way to solve such asystem of equationsisby Gaussian elimination,
which is tantamount to first factoring A =L-U into alower-triangular L timesan
upper-triangular U, and then solving L-(U-x) =b by one pass of forward
substitution and one pass of backward substitution. Since L and U each hasonly
three nonzero diagonals, the work goesfast; fewer than 30:-N arithmetic
operations suffice. But thissolution X isvery sensitive to rounding errors; they

can get amplified by the condition number of A, whichisof the order of N%.

To assess the effect of roundoff we compare this computed solution x with another obtained very

accurately and very fast with the aid of atrick: Thereisanother triangular factorization A = R-R"
inwhich R isan upper-triangle with three nonzero diagonals containing only small integers 1
and =2 . Consequently the desired solution can be computed with about 4-N additions and a
multiplication. Such asimpletrick isunavailable for realistic problems.
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The loss of accuracy to roundoff during Gaussian elimination posesa Dilemma:
Discretization error —> 0 like 1/N?, so for realistic resultswewant N big.
Roundoff is amplified by N*, sofor accurate resultswewant N small.

For realistic problems ( aircraft wings, crash-testing car bodies, ...), typicaly
N > 10000 . With REAL*8 arithmetic carrying theusual 53 sig. bits, about 16
sig. dec., we must expect to lose amost all accuracy to roundoff occasionally.

Iterative Refinement mollifies the dilemma:

Computea residual r :=A-x-b for x. Solve A-Ax =r for acorrection Ax
using the same program ( and triangular factors L and U) as “solved” Ax=Db
for an x contaminated by roundoff. Update x := x - Ax to refine its accuracy.

Actually, this Iterative Refinement as performed on the prestigious work-stations
(1BM RS/6000, DEC Alpha, Convex, H-P, Sun SPARC, SGI-MIPS, ...) does
not necessarily refine the accuracy of x much though itsresidual r may get much
smaller, making x look much better to someone who does not know better.

Only on Intel-based PCs and 680x0-based Macintoshes ( not Power-Macs) can
Iterative Refinement always improve the accuracy of x substantially provided
the program is not prevented by a feckless compiler from using the fl oating-point
hardware as it was designed to be used:

Accumulateresidua r :=A-x - b inthecomputer’'s REAL*10 registers.
They carry 11 more bits of precision than REAL*8's 53 sig. bits. Using them
Improves accuracy by at least about 11 sig bits whenever more than that were |ost.

To get comparable or better results on the prestigious workstations, somebody would have to
program simulated ( SLOW ) extra-precise computation of the residual, or invent other tricks.

e.g.. Accuraciesfroma MATLAB program (wiTH NOMENTION of REAL*10)

N = 18827 PCs & 680x0 Macs Others Condition no. > 2°7

Unrefined Residual 156 ulps. =156 ulps. Why N = 18827 ?
Because for bigger N
Refined Residual 0-41 ulps. =0-7 ulps. MATLAB’s Stack
- : : ) X Overflowed on a
Unrefined Accuracy 6 sig. bits =6 sig. bits Pentium with
64 MB RAM .

Refined Accuracy 53 sig. bits =5 dg. bits
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The foregoing tabulated results are misleading because they compare results from
the same MATLAB program runon different computers, which is exactly how
current benchmarks are expected to assess different computers' comparative merits.
But this refinement program would probably not exist if the only computers on
which it had to run were prestigious workstations that lack fast extended-precision;
on those computers, iterative refinement is best performed in adifferent way. The
differenceis subtle and yet important, if only because it raises questions about a
popular notion, promulgated especially by JAVA enthusiasts, that software ought
to work identically on every compulter.

Every iterative refinement program repeats the three steps
{ ri=Ax-b; solve A-Ax=r for Ax ; update Xx:=x-Ax ;}
until something stopsit The programs most in use nowadays, like _GERFS in
LAPACK, employ an r-based stopping criterion:
Stop when theresidual r no longer attenuates, or when
it becomes acceptably small, whichever occursfirst.
Usually thefirst x, if produced by agood Gaussian elimination program, hasan

acceptably small residual r, often smaller thanif x had been obtained from Alb
calculated exactly and then rounded off to full REAL*8 precision! Therefore, that
criterion usually inhibitsthe solve and update operations entirely.

What if r isinitially unacceptably big? Thiscan occur, no matter whether A is
intrinsically ill conditioned, because of some other rare pathology like gargantuan
dimension N or disparate scaling. Such cases hardly ever require more than one
iteration to satisfy the foregoing criterion. That iteration always attenuates x 's
Inaccuracy too, but only on PCs and Macs that accumulate r extra—precisely.

On workstations that do not accumulate r extra-precisely, updating x often
degradesit alittle and almost never improves it much unlessinaccuracy in X is
caused initially by one of those rare pathologies other than intrinsic ill-condition.

Thus, the r-based stopping criterion serves these workstations well by stopping
them as soon as they have achieved a goal appropriate for them, namely ...

L ocate an approximate solution x whose computed

residual r :=A-x-b will not much exceed the roundoff

that may accrue whileit is being computed.
Such an approximate x may still be very inaccurate; this happensjust when A is
intrinsically “ill-conditioned,” which iswhat we say to blame inaccuracy upon the
datainstead of our own numerical (in)expertise.

26



Baleful Effect June 11, 1996

Reconsider now the results tabulated earlier for the cantilever with N = 18827 . A
smaller N would do aswell; for all of them, x isaccurateto 52 or 53 sig. bits
after refinement ona PC or 680x0-based Mac. How do these machines achieve
accuracy to thelast bit or two in the face of condition numbers so huge that the
survival of any sig. bitsat all surprises us? Not by employing an r-based stopping
criterion; it would too often terminate iteration prematurely.

The stopping criterion employed to get those resultsis x-based:
Stop when decrement Ax no longer attenuates, or when
it becomes acceptably small, whichever occursfirst.

To get those results, “acceptably small” here was set to zero, which seems rather tiny but shows
what the program can do. At N = 18827 the cost of those 53 sig. bitswas 10 iterations of
Iterative Refinement; at lesser dimensions N the cost wasroughly 1/(1 - 0.0911ogN)

iterations, which suggeststhat dimensions N beyond 55000 ( with condition numbers > 263)
lie beyond the program’s reach.

This x-based stopping criterion that so enhancesthe accuracy of resultsfrom
PCs and 680x0-based Macs must not be employed on other workstations
lest it degrade the accuracy of their results and, worse, waste time.

Different strokes for different folks.

How relevant isthis idealized cantilever problem to more general elastostatic problems whose
coefficient matrices A generally do not have entries consisting entirely of small integers? Small
integers make for better accuracy from asimpler program, but they are not essential. What is
essential isthat we preserve important correlations among the many coefficient entries, which
are determined from relatively few physically meaningful parameters, despite roundoff incurred
during the generation of those entries. Such acorrelation isevident in the example explored here;
all but the first two row-sums of A vanish, asdo row—sums for a non—uniform cantilever whose
matrix A hasvarying rows of non-integer coefficients. We must force the same constraint,
among others, upon the rounding errorsin A, and then they will do uslittle harm.

But the rounding errorsincurred later during Gaussian elimination cannot be so constrained.
Though tiny, they become dangerous when amplified by big condition numbers. Thuswe are
compelled either to attenuate them by employing inverseiteration with extra-precise residuals, or
to devise other tricks that do not incur such dangerous errors.
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If you do not know how much Accuracy you have, what good isit?
Like an expected inheritance that has yet to “mature,” you can’'t bank onit.

Iterative refinement programs like _ GERFS that employ the r-based stopping
criterion can also provide, at modest extracost, an amost—aways—-over—estimate
of theerror in x . They do so by first computing amajorizer R that dominates

r :=Ax - b plusitscontamination by roundoff. Then they estimate [JA1R||,,

without ever computing A1 to obtain the desired bound upon error in x . This
estimate costs little more than afew steps of Iterative Refinement.

Unfortunately, itisnotinfallible, though seriousfailures ( grossunder—estimates
of theerrorin x) must be very rare since the only known instances are deftly
contrived examples with innocent— ooking but singular matrices A . Worse, this
error bound tends to be grossly pessimistic when A isvery ill-conditioned and/or
itsdimension N isextremely big. The pessimism often amountsto several orders
of magnitude for reasons not yet fully understood.

Inshort, versionsof Iterative Refinement working on prestigious workstations can
provide error bounds but they are too often far too pessimistic, and they can falil.

Iterative Refinement programsthat employ the x-based stopping criterion can aso
provide, at no extracost, an amost—always-over—estimate of the error in x .
They do so by keeping track of ||Ax|| which, if convergenceis not too slow, gives
afar (rarely muchtoo pessimistic) indication of the error in x . Thisisnot an
infallible indication; it fails utterly whenever the computed residual

r := (A-x-b plusroundoff )
happensto vanish. Iterative Refinement producesresidualsthat vanish surprisingly
often, sometimes because x isexactly right.

(The INEXACT flag mandated by |1EEE Standard 754 for Binary Floating—Point Arithmetic

would, if MATLAB granted us accessto that flag, help us discriminate between solutions x
that are exactly right and those, perhaps arbitrarily wrong, whose residuals vanish by accident.)

In short, Iterative Refinement appropriate for PCs and 680x0-based Macs comes
with a cost-free indication, usableif hardly infallible, of its superior accuracy.

The other workstations have nothing like it.

The following figures exhibit some evidence to support the foregoing claims.

28



Baleful Effect June 11, 1996

ACCURACY
of a Cantilever’'s Deflection after Iterative Refinement
by a MATLAB 4.2 program run on workstations

Refine Residual REAL*8 Residual HP-PA RISC & IBM RS/6000
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Iterative Refinement of residuals r ( employing the r-based stopping criterion),
asdoes LAPACK program _GERFS, awaysreducestheresidual r below an ul
or two, but rarely improves the accuracy of the solution x much, and often
degradesit alittle, on workstations that do not accumulate residuals to extra
precision. And the error-bound on x inferred from r istoo pessimistic. But on
those workstationsiit is difficult to do better.

P
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ACCURACY
of a Cantilever’'s Deflection after Iterative Refinement
by a MATLAB 4.2 program run on workstations

Refine Error REAL*8 Residual HP-PA RISC & IBM RS/6000
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Iterative Refinement of solutions x ( employing the x-based stopping criterion )
IS no more accurate than refinement of r for the Cantilever problem (and rarely
more accurate for other problems) on workstations that do not accumulate
residualsto extraprecision. And the error-bound on x inferred from Ax isstill too
pessimistic for this problem ( and too optimistic for others). Worse, refining x
usually takes more iterations than refining r , though not for cases shown here.
Therefore thiskind of Iterative Refinement does not suit those workstations.
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ACCURACY
of a Cantilever’'s Deflection after Iterative Refinement
by a MATLAB 4.2 program run on PCs and old Macs

Refine Residual REAL*10 Residual 68040-Mac & '86/Pentium PC
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Iterative Refinement of residuals r ( employing the r-based stopping criterion ),
asdoes LAPACK program _GERFS, awaysreducestheresidua r below anulp
or two, and also improves the accuracy of the solution x if not stopped too soon
(asoccurred aboveat N =64 becausetheinitia r wasbelow 1ulp) on PCs
and Macs that accumulate residuals to extra precision. But the error-bound on x
inferred from r isstill too pessimistic. On these computers we can do better.
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ACCURACY

June 11, 1996

of a Cantilever’'s Deflection after Iterative Refinement
by a MATLAB 4.2 program runon PCs and old Macs
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Iterative Refinement of solutions x ( employing the x-based stopping criterion )
far surpasses the accuracy of refinement of r for ill—conditioned Cantilever

problems ( and also for other problems) on PCs and Macs that accumulate
residualsto extra precision. And the error-bound on x inferred from Ax is

satisfactory for this problem (‘and almost always for others). Of course, the
required number of iterationsrises sharply as A approaches singularity. Still, this
kind of Iterative Refinement isthe right kind for those popular computers.
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Would the Cantilever problem make a good benchmark?

Perhaps not. Since different families of computers are best
served by different versions of Iterative Refinement with
different capabilities, like rather different kinds of error over—
estimates, comparisons would become confounded.

A good bench mark has to be a single program that does
something worth—while on every computer even if it does better
on some of them.

| have devised such aprogram: RefinEig.
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Ref i nEi g -- towards a better benchmark for accuracy:

For any square matrix B the MATLAB statement
[Q VI = eig( B)
computes an eigenvector matrix Q and adiagonal matrix V of eigenvalues.
Idedlly, V = Q1B-Q isdiagonal.

Numerical accuracy deterioratesas B approaches a set of measure zero, the
algebraic variety of Defective matrices B, onwhich V cannot be diagonal.

No single agorithm can compute Q and V asaccurately as deserved by every
datum B, if atheorem proved recently by Ming Gu at Berkeley can be taken at
face value.

Therefore ei g(...) must beimperfect;
and itis, asexampleswill demonstrate.
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Examples. Werner Frank’s NxN matrices, exemplified herefor N=5:

54321 54000 11000
44321 44300 12200
03321 F'=133320 12330
00221 22221 12344
00011 11111 12345

F’ isobtained by transposing, and P by reversing rows and columnsof F .

F, F, Pand P havethe sameeigenvalues, al positivein reciprocal pairs.
If f isaneigenvalue, sois 1/f, andthen Vf-1Nf isazeroof the N Hermite polynomial.

The smaller eigenvalues are the more ill-conditioned (i.e. sensitive
to perturbation ), exponentially more so for bigger N, the same for

al fourof F, F, Pand P'. Consequently ei g(...) computes
none of their “ significant” bits correctly when N > 17.

However, for 7<N<17, eig(...) computesthosesmaller eigenvalues
several sig. bits more accurately for F’  than for the other matrices, thus
demonstrating that

ei g(...)’s accuracy dependsin part

upon mathematically irrelevant accidents.

Remedy:

[Q V] = RefinEig(Q V, B)
ismy MATLAB-language program designed to try to improve the accuracy of
[Q V] = eig( B)

in cases when it has been degraded by some accident.

Sometimes the improvement is spectacular.
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How toinvoke Refi nEi g fromwithin MATLAB :

[Q V]
[Q V]

Convergenceis cubic ( extremely fast) if it occursat all,
so oneiteration usually does about as well as can be done.

eig( B) ; %... Initial approximations Q, V .
RefinEig(Q V, B) ; %.. Iterateuntil “convergence.”

How Refi nEi g works:
Ideally Q1B-Q =V would be diagonal, but because of roundoff we find
AC = Q1B-Q-V,

when computed, to be nonzero and nondiagonal. We shall replace the approximate
eigensystem [Q, V] by theexact eigensystem [ Q+ Q-AZ, V+AV ] wheren,
ideally, AV isadiagonal correction and AZ isan eigenvector corrector,
normalized by diag(AZ) = O. They have to satisfy the equation

AV = AC + V-AZ -AZN - AZ-AV +ACAZ .
Tosolveitfor AV and AZ, wefirst rewriteit in aform that suggests an iteration :

AV = diag(AC + AC-AZ) = diag(AC) + O(A...)% ;

U := the NxN matrix full of 1s ;
E:= UV-VU+ UAV-AV + | ; .. presumably entirely nonzero
AZ = (AC-AV +AC-AZ)JE = (AC-AV).JE + OQ..)% .

(Thedivision (...)/E isto be performed elementwise.)

Initializing AZ to O and running through these equations in turn would yield first-
order approximationsto AV and AZ with afatal defect; they degeneratein case
some eigenvalues of B aretoo closely paired though otherwise well separated,
which is the most common situation for which ei g(. .. ) isinaccurate.

Ref i nEi g’s innovation isabetter initialization of AZ inspired by a half-century
old formulaof Jahn and Magnier discussed in Bodewig's Matrix Calculus
(1959). This AZ would be exactly right if AC were a permuted diagonal sum of
1x1 and 2x2 matrices, and iscorrect to first order otherwise.

Ref i nEi g computes residuals like R=B-Q-Q-V, neededfor AC=Q 1R,
in aslightly peculiar way. Instead of the MATLAB expresson B*Q - QV,
R=1[B, Q*[Q -V] iscomputedinonematrix multiplicationfor areason
that will become evident momentarily.
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Ref i nEi g asan Accuracy Benchmark

MATLAB scripts were prepared to assess the accuraciesto whichfirst ei g(. . . )
andthen Refi nEi g(...) cancomputethesmallest few eigenvaluesof W.
Frank's matrices F, F', P and P’ for dimensions N from 8 to 24.

Sincethe accuracy of ei g(...) issometimesaffected by equilibration or balancing, it was
run both with and without; see MATLAB's documentationfor ei g(..., ‘nobal ance’) .

Since MATLAB runson practically every commercially significant computer that
conformsto |EEE Standard 754, and MATLAB provides no way to mention its
floating-point format ( al its variables usethe 8-byte doubl e format), and ...

since Ref i nEi g performsavaluable function ( asthe following results will
confirm) regardless of the floating-point formats available, and ...

since the input data consists of arrays of easily converted small integers, and ...

since the desired eigenvalues are not vulnerable to the Stopped Clock Paradox,

Ref i nEi g possesses the four qualifications enunciated above
for an acceptable Accuracy Benchmark.

Let usview itsresults:

These results were obtained off my 68040-based Macintosh Quadra950, and
differ negligibly from results off my 386/387-based PC. The resultsfor other
computers, suchasthe MIPS, SPARC, H-PPA, PowerPC/Mac and DEC Alpha,
were simulated by setting the Mac’'s and PC’'s Precision Control to emulate the
other computers’ arithmetics. The emulation isimperfect, but close enough.
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Correct sig. bits obtained from Frank's matrix F
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Correct sig. bits obtained from Frank's matrix P*
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Correct sig. bits obtained from Frank's matrix F'
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How does MATLAB benefit from an Extended format
which Qdrt ¢ showed us MATLAB eschews ?

MATLAB ‘s matrix multiplication operation is programmed carefully, differently
for every different computer, in order to reach
the highest possible speed.

Every element of amatrix product isa

Scalar Product = agy'by +ayby+agbs+ ... +ayby .

By keeping products g-b; and their sumsin fast registers to maximize speed,
MATLAB computes them to the precision of the registers; on computers with
Extended precision, thatis 64 sig. bits even though the operands g and by carry

only 53 sig. hits.

Ref i nEi g computesitsresidualslike R = B-Q- Q-V asmatrix products

oy

which, after massive cancellation, come out almost as accurate asif evaluated in
64 sig. bit arithmetic though they are stored to only 53 sig. bits.

Thus, on computersthat haveit,
Extended precision can enhance Ref i nEi g’s accuracy,
typicaly by 11 sig. bits,
without ever being mentioned.
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Summary of Observations so far:

1. The Non-Symmetric Eigenproblem has
no fast foolproof solution.

Occasionally trial-and-error isinescapable.

2. Ref i nEi g usually improves accuracy
regardless of the underlying arithmetic.

Ref i nEi g never hurts much, evenif it cannot help much. (F’)
Sometimes it recovers accuracy lost to (im)balancing. (F, P')
Sometimes it improves accuracy spectacularly. (P)

3. Computerswith Double-Extended registers
aways gain accuracy through Ref i nEi g.

If morethan 11 sig. bitswould be lost, those registersrecover at least 10.
They sometimes recover spectacularly more. (F’)

4. This accuracy benchmark reveals something interesting,
about the different accuracies inherent in different computers,
Impossible to glean from benchmarks dedicated solely to

Speed.

Incidentally, the accuracy achievedby Refi nEi g onmy Mac Quadra and on
my PC isachieved inlessthan half thetime Mathematica and MapleV consume
to achieve the same accuracy from their multi-precision arithmetic software.
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TheThreat: Atrophy and Stagnation

For lack of benchmarks that assess accuracy or other desirable attributes
other than speed,
Apple's S.A.N.E never received the accolade it deserved from the marketplace.

Consequently, Apple’'s management cut itslosses, dispersed much of Apple’'s
numerical expertise, and abandoned the Double-Extended format when they

chose to move from the 680x0 to the faster Power-PC-based “ Power Mac”
( which goes faster for reasons other than its omission of an Extended format).

For lack of benchmarks that would reward their diligence, compiler writers have
not supported novel capabilities of |EEE 754, so atrophy threatens them:

Fast flexible handling of exceptions like Division-by-Zero and
Gradua Underflow.

Directed roundings, necessary for good Interval Arithmetic.

Extended precision, capable of evolving into arbitrarily high precision.
Extended range.

Moregenerally, for lack of waysto accommodate innovations, current benchmarks
tend to stifle innovations regardless of their merits.
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Computer Languages and Compilers hold center stage.

Mediaeval thinkers held to a superstition that
Thought isimpossible without Language.
That iswhy “dumb” changed in meaning from “speechless’ to “stupid.”

With the advent of computers, “Thought” and “Language” have changed their
meanings, and now thereis some truth to the old superstition:

In so far as programming languages constrain utterance,
they also constrain what a programmer may contemplate productively.

Few compiler writers address challenges to mathematical, scientific and
engineering computation, and these few are preoccupied with keeping their
handiwork abreast of rapidly changing hardware in a bitterly competitive
marketplace where no architecture enjoys more than a few months of ascendancy.

They haveto run asfast asthey can just to stay in the same place.

Consequently, computer languages have not been evolving towards scientifically
desirable goals, swayed asthey are by over-reliance upon standards committees
aesthetic fads, onthe one hand, and industrial demands for compatibility with past
practice on the other. For instance, acase could be madefor ...

The Baleful Effect of
C++
upon
Applied Mathematics,
Physics and Chemistry.
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The challenges facing the Scientific Community:

Although Computer Science ought to be a branch of Applied Mathematics
distinguished solely by its preoccupation with the cost of computation, we cannot
rely upon the mathematical probity of computer professionals among whom few
harbor hospitality towards mathematical thought. We have educated them badly:

Somethink Mathematics isa Religion
whose rules they have been taught not to break for fear of moral condemnation.
e.g., Divisonby Zero, Discontinuity .
Although violating somerulesis perilous, others are intended to be broken;
the trick isto tell which are which.

Somethink Mathematics hasat most Aesthetic value.
If you believe Beauty is the criterion by which Mathematics should be judged,
pleaserecall that Beauty liesinthe Eye of the Beholder ;
in the eyes of abug, aroseis mere fodder.

Mathematics is a miraculous reward for penetrating thought.

To render that kind of thought ever more economical is the computer’s most
worthwhile promise. We had best not entrust it entirely to people antipathetic to
mathematical thought or motivated too much by mere pecuniary rewards.

The Scientific Community has to help promulgate
Appropriate Benchmarks

and other schemesthat will reward diligence and encourage useful innovation while
discouraging unnecessary and anarchic diversity that fragments the marketplace.

This problem is difficult technically and politically.
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