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Three Challenges:

 

•  How can  

 

SPEC

 

  benchmarks take  Correctness  and  Robustness  into 
account as well as  Speed?

•  How can  

 

SPEC

 

  benchmarks inhibit petty  “optimizations”  that turn into 
pejorations,  which degrade the correctness and mathematical integrity 
of numerical software generally?

•  How can  

 

SPEC

 

  benchmarks reward improved arithmetic designs instead of 
eschewing them,  thus penalizing their designers?
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“Correctness”  is usually construed as  “Accuracy within Acceptable Limits”.

 

Accuracy  is  NOT  the goal of applications software used directly 
by scientists and engineers for their own numerical computations.

 

They perform those computations only in order to  Predict.

Prediction entails Extrapolation.

Extrapolation  practically ignores some errors while amplifying others.

Approximation,  without which computation would take longer than we can wait,  
can be justified only if we know its errors will not be amplified intolerably later.

 

In general,  no way exists to know that.

 

Approximations acceptable in one context can be intolerable in another,  and only 
a possibly difficult error-analysis can be expected to tell which is which.   See

 

“… Mindless Assessments of Roundoff …?”  

 

http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

 

 .

 

This is why we require support software --  the Math. library and compilers --  to 
maintain mathematical integrity and accuracy as well as economically possible.

Petty compiler  “optimizations”  that undermine mathematical integrity are 
actually pejorations that benchmarks should disallow or at least discourage.
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Petty Compiler  “Optimizations”

 

that actually pejorate floating-point computations:

 

•  Compile-time algebraic rearrangements that override “redundant” parentheses
to apply distributivity,  presumably to exploit common subexpressions.

•  Compile-time algebraic rearrangements that override “redundant” parentheses
to apply associativity without the programmer’s explicit licence.

 

     Most programmers will licence it to speed up almost all matrix multiplications.

 

•  Compile-time replacement of divisions,  sqrt,  exp.  log,  trig functions,  etc.  by
faster but less accurate versions  

 

with the same names

 

.  If a programmer
needs a fast-but-dirty  sqrt,  say,  he should either call his own  

 

mysqrt

 

 
or call a  

 

dirtysqrt

 

  from the  Math.  library.

•  Register-spill  to and from anonymous variables narrower than the registers.

•  Replacement of  

 

Gradual Underflow

 

  by  

 

Flush-to-Zero

 

  bundled with other 
optimizations,  some of which may be good ones.

Benchmark programs that allow or encourage these pejorations impose them 
unwittingly upon innocent programmers who opt for speed when they cannot 
appreciate the consequent degradation of mathematical integrity.
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Example:

 

  Slowly converging sums for infinite series,  for updating averages,
for amortization schedules,  for quadrature (numerical integration), 
and for trajectories  (differential equations),  among other things.

Ideal infinite sum := 

 

∑

 

k

 

≥

 

1 

 

term(k)         is approximated by

Computed Sum := 

 

∑

 

1
N

 

 Term(k)  +  Tail(N)
in which  Tail(N)  approximates   

 

∑

 

k>N 

 

term(k)   ever better as  N  increases.

 

But we shall not know  N  in advance.  It may mount into billions.

 

Billions of rounding errors can degrade severely a sum computed naively :

[xxxxxx... Old Sum …xxxxxx]
+ [xxxxxx… New Term …xxxxxx]
-------------------------------------
[xxxxxx… New Sum …xxxxx] […lost digits…] 

The lost digits affect the Computed Sum  about as much as if those digits had first 
been discarded from each  New Term.  The effect is severe if  N  is gargantuan.

The following program compensates for those lost digits;  for simplicity,  it has 
been written assuming every  Term(k) > Term(k+1) > Term(k+2) > … > 0 .  …
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Compensated Summation:

 

Sum := 0.0 ;  Oldsum := –1 ;  comp := 0.0 ;  k := 0 ;
While  Sum > Oldsum  do …

k := 1+k ;  Oldsum := Sum ;  comp := comp + Term(k) ;
Sum := comp + Oldsum ;
comp := (Oldsum – Sum) + comp ;

    End While Loop;
Sum := Sum + ( Tail(k) + comp ) .

However,  an over-zealously  “optimizing”  compiler deduces that the statement
 comp := (Oldsum – Sum) + comp ;

is merely an elaborate way to recompute  comp := 0.0 ,  and therefore scrubs out 
all references to  comp,  thus simplifying and slightly speeding up the  Loop:

Sum := 0.0 ;  Oldsum := –1 ;  k := 0 ;
While  Sum > Oldsum  do …

k := 1+k ;  Oldsum := Sum ;
Sum := Term(k) + Oldsum ;

    End While Loop;
Sum := Sum + Tail(k) .

But now the computed  Sum  can be wrong in the worst way:  Occasionally its 
error will be too small to be obvious but not small enough to be inconsequential.

How can a programmer unaware of the  “optimization”  debug that?
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Example of Pejoration by Over-Zealous “Optimization”:

 

Our task is to compute   Sum := 

 

∑

 

1
N

 

 Term(k)  +  Tail(N)  given that 

Term(k) :=  3465

 

/

 

( k

 

2

 

 – 1

 

/

 

16 )  +  3465

 

/(

 

 (k + 1/2 )

 

2

 

 – 1

 

/

 

16 

 

)  ,

 

 
Tail(k)  :=  3465/( k + 1/2 )  +  3465/( k + 1 )  ,  

using each of the foregoing programs,  one compensated,  the other  “optimized”.

 

Of course,  a little mathematical analysis might render the programs unnecessary,
but programming a computer is easier and running it is cheaper than analysis.

 

Here are the results from a  Fortran  program run on an  IBM T21 Laptop:

Even though the  “Optimized”  program’s  Loop  runs almost  10%  faster,  the 
program run as written got a significantly better result about  25%  sooner.

 

Do you see why?  If someone doesn’t,  would you like him to  “optimize”  floating-point?

 

Table 1:  

 

Final Computed Sum

 

Program: Compensated “Optimized”

Final Sum : 9240

 

.

 

000000000000 9240

 

.

 

000001147523

Time : 13

 

.

 

7  sec. 17

 

.

 

8  sec.

Loop-count  K : 61,728,404 87,290,410

Time per Loop : 2

 

.

 

22E–7  sec. 2

 

.

 

04E–7  sec.
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What Computational Style(s) should benchmarks promote?

 

In the absence of a competent error-analysis,  programmers will almost never be 
embarrassed by roundoff if they opt for old-fashioned  Kernighan-Ritchie  

 

C

 

  
semantics,  which by default evaluated every expression and constant in  

 

double

 

  
even if all operands were  

 

float

 

s.  This policy accords with an ancient rule-of-
thumb inherited from the days of slide-rules and electromechanical calculators:

In the absence of a competent error-analysis,  perform all intermediate arithmetic 
in a little more than twice the precision to which data and final results are stored.

An updated rule-of-thumb would replace  “a little more than twice ...”  by  “the 
widest precision available that does not run too slow.”

Except perhaps for  C99 ,  today’s programming languages and compilers are 
stuck with a mind-set adopted as a disagreeable but necessary expedient in the 
late  1950s  when compilers had to fit entirely into  128KB  and pass just once 
over the program being compiled.  Benchmarks should allow excursions beyond 
that mindset.  

Here is a possibility that current benchmarking policies would disallow:
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A Candidate Worth Considering as a  Benchmark:

 

Iterative Refinement of Computed Eigenvectors and Eigenvalues

 

Eigenvectors and Eigenvalues  characterize the  “Natural”  modes and 
frequencies of vibration of elastic structures of aircraft,  bridges and buildings,  
among many other things.  Stimulation of some natural modes can cause failures.

 

Examples:  “Galloping Gertie,  the  Tacoma Narrows bridge.  Marching army  “Breaks Step”  when crossing a bridge.

 

Computed eigensystems may lose accuracy to roundoff in several ways:

 

•  Losses worsen as dimensions  (degrees of freedom)  increase.
•  Eigenvectors lose accuracy as their eigenvalues approach coincidence.
•  Severe losses can occur if data’s structural symmetries are lost to roundoff.
•  Severe losses  …  if software mishandles systematically wide-ranging data.

 

Example:  A  flea  atop a  dog  atop an  elephant  atop the  Eiffel  tower.
The flea’s vibrational frequencies so dominate the tower’s that the tower’s
can be lost to roundoff unless appropriate special methods are used.

 

Iterative Refinement

 

  is a scheme that usually attenuates those losses without 
requiring that their cause(s) be identified.  The scheme starts by computing a  

 

Residual

 

  that measures how badly the solution computed so far dissatisfies its 
defining equations.  Then the residual guides refinement of that solution.

 

First Illustrative Example:

 

  n-by-n  

 

Pascal

 

  matrices’ elements range ever 
wilder as dimension  n  increases.  We seek at least  10  correct sig. bits.
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The  n-by-n  

 

Pascal

 

  matrix is an  n-by-n  corner of an infinite matrix constructed 
from  Pascal’s Triangle.  Here is how it looks when  n = 6 :

 

     1     1     1     1     1     1 
     1     2     3     4     5     6 
     1     3     6    10    15    21 
     1     4    10    20    35    56 
     1     5    15    35    70   126 
     1     6    21    56   126   252 

 

Though no simple formulas for its  n  eigenvalues are known,  they are known to 
be positive and come in reciprocal pairs:    If  

 

λ

 

  is an eigenvalue,  so is  1/

 

λ

 

 .
We shall gauge the accuracy of computed eigenvalues
by how close products of appropriate pairs come to  1 .

Because the ratio  (biggest eigenvalue)

 

/

 

(smallest)  grows like  2

 

4n

 

/

 

(n

 

π

 

) ,  we 
expect smaller computed eigenvalues to lose sig. bits at a rate proportional to the 
dimension  n .  The loss rate depends upon details of the computation;  most 
algorithms used today lose accuracy faster if rows and columns are reversed thus:

 

   252   126    56    21     6     1 
   126    70    35    15     5     1 
    56    35    20    10     4     1 
    21    15    10     6     3     1 
     6     5     4     3     2     1 
     1     1     1     1     1     1 

 

Then most programs lose almost  4n  of the sig. bits carried by their arithmetic.
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M

 

ATLAB

 

 v. 6.5  on a  Wintel PC  accumulating matrix products to  53  sig. bits:
Refinement boosts successful dimensions  n  from  n 

 

≤

 

 14  to  n 

 

≤

 

 17  in a tolerable time.

0 5 10 15 20 25
0

10

20

30

40

50

60

Dimension

Time & Accuracy of RecipReversed Pascal Eigenvalues on a   PC(53sb)6

             400*time
        raw sig. bits
    refined sig. bits
10 sig. bit threshold
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Similar results are obtained on  Sun SPARCs,  SGS MIPS,  HP PA-RISC,  IBM 
Power PCs  and  Apple Power Macs:

Iterative Refinement  increases from  n = 14  to  n = 17  the
largest dimension for which at least  10  sig. bits are achieved.

For larger dimensions computation time rises steeply mainly to issue warnings of 
possibly severe loss of accuracy.

However,  the foregoing are  

 

UNFAIR

 

  as  

 

BENCHMARKS

 

  for  Wintel PCs.

These machines can get better results in the same time running  exactly  the same  
M

 

ATLAB

 

  programs on the same version  6.5 of  M

 

ATLAB

 

  after invoking the 
prefatory command

 

system_dependent(‘setprecision’, 64)

 

  
(or on version  4.2  without that command)  to accumulate matrix products to  64  
sig. bits before storing them back to  53.  This is how  Intel’s  floating-point was 
originally  (back in  1978)  designed to be used.

With that extra-precise accumulation,  Iterative Refinement  increases from  
n = 14  to  n = 20  the largest dimension for which  10  sig. bits are achieved,

and with no significant increase in running time.
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M

 

ATLAB

 

 v. 6.5  on a  Wintel PC  accumulating matrix products to  64  sig. bits:
Refinement boosts successful dimensions  n  from  n ≤ 14  to  n ≤ 20  in a tolerable time.
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Dimension

Time & Accuracy of RecipReversed Pascal Eigenvalues on a   PC(64sb)6

             400*time
        raw sig. bits
    refined sig. bits
10 sig. bit threshold
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Second Illustrative Example:

Wallace Givens’  n-by-n  matrix looks like this when  n = 6 :

    22    18    14    10     6     2 
    18    18    14    10     6     2 
    14    14    14    10     6     2 
    10    10    10    10     6     2 
     6     6     6     6     6     2 
     2     2     2     2     2     2 

It can be derived from a discretization of an integral equation.  Its eigenvalues 
and eigenvectors can be computed accurately from simple formulas that shall be 
used only to check the accuracy of  MATLAB’s  and my eigensystem software.

The smallest eigenvalues cluster just above  1 ;  the biggest reach over  (4n/π)2 .   
The eigenvectors have a special structure:  Every eigenvector’s elements can be 
obtained from any other’s by permuting its elements and reversing some signs.  
The accuracy of computed eigenvectors belonging to small clustered eigenvalues 
can be degraded by roundoff to an extent that grows about as fast as  n4  when the 
dimension  n  is huge.  Iterative refinement can undo some of that degradation.

Alas,  something goes awry when dimension  n  gets huge.

The following results for  n = 1000  were obtained from a  Wintel PC.
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Table 2: Execution Times

MATLAB v: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53 s.b. 64 s.b. 64 s.b.

eig 52.5 sec. 52.9 sec. 122 sec.

refiheig 67.1 sec. 66.7 sec. 1171 sec.

Table 3: Residuals  vs.  minimal  2.3E-11  

MATLAB v: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53  s.b. 64 s.b. 64 s.b.

eig 2.1E-9 1.2E-10 3.1E-9

refiheig 1.2E-10 2.9E-11 7.4E-12

Table 4: Eigenvector Accuracies in Sig. Bits

MATLAB v: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53 s.b. 64 s.b. 64 s.b.

eig 18.4 s.b. 23.4 s.b. 18.6 s.b.

refiheig 25.9 s,b. 30.2 s.b. 40.7 s.b.
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Why is  MATLAB version 6.5  so much  (20 x)  faster than  version 4.2 ?

Why is  v. 6.5’s  refinement so much  (3 sig. dec.)  less accurate than  v. 4.2’s ?

V. 6.5  splits big matrices into small blocks to incur fewer cache misses during 
its matrix multiplications.  These can run enormously faster than  v. 4.2’s.

But  v. 6.5  uses a matrix multiplication subroutine (BLAS 3),  programmed by  
Intel,  that spills individual block products,  each accumulated to  64  sig. bits,  
into memory holding only  53.  This squanders almost all the advantage of extra-
precise accumulation,  spoiling residuals while adding negligibly to speed.  The 
consequent loss of  10  sig. bits of ultimate accuracy would have been overlooked 
if we could compare only computed residuals instead of correct eigenvectors.

Thus does petty optimization for speed become serious pejoration for accuracy.

Stories for Another Day:  Ants at a Picnic
•  How slow handling of  “Rare”  Infinities and NaNs  messes up parallelism.
•  How slow handling of  Underflows and Subnormal  operands induces unwise

flush-to-zero handling of underflows,  like the  Little Boy Who Was Ignored
Wrongly When He Cried  “WOLF”  Again.

See  http://www.cs.berkeley.edu/~wkahan/Grail.pdf  and  …/ARITH_17U.pdf .


