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Numerical analysts often pass the buck by alleging that certain compu-
tational schemes are "numerically stable" even when they produce palpably
wrong answers., This note is intended first to heTp the layman understand -
why those allegations, howeVer'mis1eading, may be true, and-second to show
numerical analysts that the buck is not so easy to pass as might at first
appear. | ' a

Suppose you want to compute

' = filx) ‘
but your computer gives you & 1instead and says that
e Am = fla Az | |
for some suitably small Az and Az , Can you'conCTude that 2 is close
to' ¥ 7 Not necessarily. None the less, such a calculation may be regarded
s "stable"; the discrepancy between y and & , if 1arge, will then be
'bTamed upon an "ill cond1t1oned“ furction f .

Here is an example. Say & = ('% ) and fz) s g - B Try o= 1 .000

and B = ,9939 on a 4-significant dec1ma1 computer built 1ike ‘Some that I
have learned to 1ive with:

&z L3
1.000 - 1.000 1,000
-0.999 9000 ©-0,999 9 -~ -0.999 9000
0.000 1000 ~ o 0.001 . 0.000 666
o | N &
noox 07t 1000 x 107 o

Three different answers from three different machines.  In each casey
. however, the computed value & 1s very nearly, nay, exactTy what would have
resulted From the exact calculation of F ata slight1y perturbed argument
.'JC+A.'L" '

~]"i'ms pesearch was su?ported by a grant from the u. S Office of Nava] Research,.
contract number NOOO a69—A 0200 017 -



N

1 c2 : 3

1.000 | 1.0009 - 00,9999
-0.9999  -0.9999 | ~0.9999
10.0001 0,007 S 0.

Here is another example. Say f(x} =sinx and « =
31415 92653 58979 32384 62643. 38328. Do you really expect to see -

y =0.4971.. xTO'6 ? If so, how many significant figures will your computer ,
have to preserve when converting « from decimdl to binary, or when dividing: . -
x by = 7 Perhaps now you see why it is cheaper to. produce instead of Y

a value =z which sat{sfies' P + Az = sin(e + Ax) for some Az amouriting to.

at most a unit or so in 2's last. place and some Ax amounting to perhaps a
fraction of a unit in the last retained piace of x .

In general, we make a virtue of" necessity by saying that a SCheme‘to
oompute_ y = flx} is numer1ca11y stab1e whenever we know small. bounds for
the perturbations Az and Ax in the equation z + Az = flx + Ne) satisfied
by the computed value z . And if =z is.then very d1fferent from y we _
pass the blame to f by describing it as 111 cond1tioned“ at « . In effect,
we simplify the problem of est1mat1ng y - & by abstracting from a comp]icated

computational scheme Just two numbers, the bounds upon Az and Az , whence
the estimation of y - reduces to an ostensibly machine~independent analysis
of the properties of f .

‘ Unfortunately, the simplification 15 sometimes complicated by nasty problems.
First is the vagueness of our concept of numerical stab111ty. The function f
may be regarded asfmappihg one metric space into another, but the spaces are .
not always obvious. For example, when f = aB should we regard its domain
as a two-space of pairs { g') or, if we are concerned only with B = 2, o
as a one-space of numbers (a) ? More generally, how do we d1st1ngu1sh between o
:those aspects of a problem which are, by association with: 7, den1ed any - -

~variation, and those aspects which are, by association with «x , exposed to s11ght'
perturbations? And how shou1d the metrics be chosen? The metrics. shou]d
ideally veflect the interests of the man who wants to compute y = fla)

'-ass1gn1ng to equally 1mportant (or equa11y 1nsign1f1cant) var1at1ons the same
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measure .of magnitude, In pfactité, the metric tends to reflect mainly the
Timitations of the equipment or the inclinations of the numerical analyst.
Finally, even when the metric spaces are perfectly obvious, we,encountér ,
an unavoidable arbitrariness'in the bounds upon Ax and Aé , for we can
always diminish one at the expense of increasing the other without altering
the computational scheme in any way. For example, when f(x) = vz we

can validly wfite %EfFj&E with  |Az{ < ¢ and lleI

3 — ' @

a + Az

< £

using any bounds ¢ and £ that satisfy both 1+ /0 - c)z > T'+ €
and (1 -£8) 7 (1 + c)z' 1 - ¢ for some € > 0 that depends upon the
scheme's accuracy. More generally, we set g = 0 for the sake of s1mqucity
whenever we can do so without forc1ng c to be embarrassingly Targe.

A second nasty problem arises when we try to prove that some scheme is
stable. Some familiar schemes, long believed to be.stable, have not yetA
been proved stable. For exaﬁb]e, suppbse Flx) = x-] for »n x'n matrices
x with fixed but large n-. Nobody has yet obtained bounds for
lawl/lzd and basd/lal in - .
| 2+ bz = (.'x: + Ax) - ‘ ,
which are simultaneously both 1ndependent of « and not exponent1a11y growing
functions of n , despite that. Gaussian Elimination w1th pivoting and other ,
comparable techniques are regarded (probably rightly) as stable ways_to“1nvert |
matrices no matter how nearly singular those matrices may be.

A third nasty prob1em arises when we realize that no computat1ona1 scheme
- exists for its own sake; it is a means to an end. And that end is generally
reached via a concatenation of schemes. For example, to compute hiz) = g(fo)J
we may naturally apply F to =z to get y , and then g to y to get '
h(x) = gly) . But we will not actually get hixz) 3 1nstgad we shall obtaiﬁ ;
in p1ace of y , a value z satisfying =+ AMa=flz+ o) for some sma11a :
bounded .A'z and A'z , and then we: sha11 construct in place of  hlx) . some -

U sat“lsfy'mg u + A" g(z + A'z) = g(fle * Aa) - A'z + A“.s) B

~ There is no guarantee in general that small perturbations = Au and Az ex1st _

Csatisfying w+ du = Wiz + Ax) . Thus, the concatenation of two stab1e schemes
cou1d be {and usua11y is) unstable. ' ' '
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There are theorems which describe some of the circumstances when
concatenated schemes are stable. Few of those theorems are both interesting
and generéi.- Their gist tends to be of the following kind (for the example
n = flg) above); o |

In order to compute h(x) = flg(x)} in a stable way, we must ensure
that the errors A'z and A"z 1in the intermediate result a % flx) are
appropriately correlated, despite that those errors may be astonishingly
large without vitiating stability. The appropriate correlations must all
too often be described in a way which exhumes just those computational '
details that the error-analyst had hoped to bury in the codrse of distilling
all computational errors into two simple bounds.

Thus do we perceive the error analyst's quandary; when should the error
in a computational scheme be summarized in a simple way? Do so too. soon,
and the result may be too weak to be useful. Do so too late, and the result
may be too complicated to be comprehended. And there is no guarantee that a
gap exists between “too soon" and “too late".



