Futile = July 18, 1989

The Occasional Futility of Higher—Precision Arithmetic

Prof. W. Kahan
Elect. Eng. & Computer Science
University of California at Berkeley

Abstract:
There is a function Gix) which should take the value 1.0
for all real numbers x 3 but a straightforward program to
compute Bk} gets 0.0 instead for almost all of G15),
Gla)., B{17), .., GiF999) no matter how high the relative
accuracy. to which every arithmetic operation is carried out
provided it is rounded or chopped to the nearest rational
number representable with a previously chosen finite number
of digits, as happens in most floating-point arithmetics.

Backgrounds

When numerical computation loses accuracy to roundoff, the usual
remedy is recomputation carrying higher precision. The reward for
every additional digit carried is normally one more correct digit
in final results. UOccasionally improvement comes slower, another
correct digit for every two or more additional digits carried, as
when we compute unknowingly what turns out te be a multiple root.

{ Why unknowingly 7 Because if we knew the root's multiplicity,
we would prefer to solve instead a derivative equation with the
same root but at lower multiplicity, thereby enhancing speed as
well as accuracy.) In any event, accuracy is expected to improve
a5 pPreclslon 1Ncreases. Is that expectation always fulfilled?

There can be no guarantess. Increasing arithmetic’s precision
throughout a program without keeping a correct relationship among
different precisions in different places can break a program that
was previously cast iron. Increasing the precision of arlithmetic
without also conserving obther importamt properties, for instance
monotonicity and sign-symmetry, can also break a program that was
previously cast iron. A numerically unstable program may seem to
" dislike " certain data for which it produces inaccurate results
though the desired results would have been unexceptionable; then
increasing precision may well provide satisfactory results at data
previously " disliked " without curing the instability. In that
Cane, increasing precision diminishes the risk of suffering from
the instability without eliminating it.

Alas, when one part of a program generates intermediate results
too close to data that a subgequent part " dislikes,” i1ncreasing
precision may do no good at all. That situation is illustrated
here by an example, the following short program:

Real Variables x, v, z 3 :
Real Function F{z) .= if z = O then 1 else (eZ~-1)/z 3
Real Function G(y) = |y — ¥ {y=+1) | — 1/ (y+ ¥ (y=+1})) 3
Real Function Gi(x) = F{Q(xX)3) ;

For integer n = 13 to 9999 do Print{ n, G{n) 2.

Futile ' July 18, 1989

Results from this Program:
If no rounding error ooccurred during the program’s execution, it
would print G6(n) = 1 Ffor all n > 0 . That outcome is unlikely.

Transcribe the foregoing program into your favorite programming
languages and run 1t on your favorite computer using approximate
arithmetic as precise as you like; it could be floating-point
built into the hardware or simelated in software, or it could be
rational arithmetic of limited accuracy chosen in advance. The
likeliest result is G(m) = 0 for all 9985 values of n.

There may be exceptions. For instance, the HP-2885 and other
Hewlaett—Packard programwnable calculators that carry 12 sig.
dec. compute BG(2) = G(42) = | correctly but otherwise &6 = O .
Binary floating-point rounded to 24 sig. bits delivers | for
G(l)y, G(7 and G(2048) but otherwise O . Huge valuss of 6n)
might be generated by a peculiar arithmetic to be described later.
AlsD described later are results from high-precision arithmetics
that come with some automated alygebra systems.

How does the program (npt) work?
Our example concerns the computation of a valus of a function
‘F(z) that can be rewritten

Ff{z) = §& e dr
= 1 4+ z/2 + 2=/ + 25/24 + 29/120 + L.,
to reveal that it is really an entire analytic function with no
singularity at any finite =z . But the formula used to compute

F{z) in the program above i1is numerically unstable when |z | is
very small. For instance, when Izl is so small that e® must
round to 1 then the computed value of Fi(z) must be O instead

of nearly 1 . { & cimple program that computes F(z) accurately
practically everywhere in its domain will be presented later.)

In the absence of troundoff the function {(y) wWould reduce to O
for every real v . Instead, ¢ {y=+1) rounds to something a
little different, say Viy=rl) + vy where hy is conparable
to a rounding error in vy . After that vy is subtracted exactly
on most machines, and on all whemn vy is a small integer; and
subsequent rounding errors amount to a quantity {/y comparable

to a rounding error in 1/y . Hence, the computed value of Q(n)
must be YANZH1Y + 510 - n - 1/ n2+1) +ny ~4/n = nn~-{/n .
This value vanishes only when » = y/n® is exceptionally small,

smaller by a factor like 1/n® than might reasonably be expected.
We should be mildly surprised were (G{(n) +to vanish once for any
integer n hetween 15 and 9999 ;3 experience with a wide variety
af floating—-point arithmetics and with the approximate rational
arithmetic capabilities of DERIVE™ on an IBM PC confirms this
expectatian. Therefore (N} is almost never (O but is instead
roughly n»nn , a guantity cowmparable to a rounding error in n .

Unless the function exp is computed to far higher relative

accuracy than the ¥ function, the closest available rational

approxXimation for the computed value of ‘
exp(G(nY=E) % exp(OM=Y = 1 + (M= +)2 /2 + ...

is clearly 1 . That is why Gin) = F@MN)=y is almost always

computed as O incorrectly instead of 1 correctly.

z

Futile July 18, 1989

Something 2lse wmight happen if exp(@(n)®) were approximated not
by 1 but by the next available rational approximation after 1 ;
call it 1+ 4§ . Then the computed value of G(n) could be huge,
roughly 8/7pn) =, This peculiar event cannot occur if addition
is chopped or rounded-to-nearest, which covers practically all
computers’ hardware floating-point arithmetics. Known exceptions
are the IIT 2C87 and 3087 +flgating-—point coprocessor chips at
their widest (10-bhyte) precision.

Numerically stable computation of F{(z)
The function F{z} +turns up in finmancial calculations. That is
reason enough to facilitate its computation, as do some ftloating-
point coprocessor chips like Motoreola's 6&BBB1/2 and Intel’'s
180387 , and as do some run—time malh. libraries like those 1n
4.3 BSD Berkelesy UNIX™ and the Standard fApple™ Mumerical
Environment. They all provide a function like

expmiiz) = ef-1 = z % z®/2 + z=/6 + /24 + ...
correct to full working relative accuracy no matter how small bz
may be, thus eliminating instability from the obvious formula

Fi{z) = if oz = 0 then 1 else expmllzl/z .

Without expml, a more devious program is needed:

Function F{(z)
y = explz) - rounded to wo

i v underflowed then return F
else if vy = 1 then return F

#lse return F

ng precision.
L/z

= Ay-11/1ndly) .

Provided exp, 1ln, subtraction and division is each performed
accurataly to within a unit or two in its last place delivered,
this program has been proved to deliver F accurately to within
a few units in its last place too. I+ z is too big then explz)
will overflow, but that lies beyond this note’'s scope. The point
is that replacing the first program for F by this last one cures
its numerical instability (despite violating folk-wlsdom by an
exact comparison of one floating-point number, v , with anaother,
1 Y: and then computation yields Gix) = 1 for all =x > 0 .

Computerized Algebra Systems
To-day these systems offer the easiest way to exercize arithmetic
of arbitrarily high precision, but their arithmetics behave in
strange ways understood by only their creators, 1+ anyone. Three
such systems wers invoked to compute G4n) , namely
DERIVE 2.3 from the Soft Warehouse Inc., Honolulu, HI,
Maple V from Waterloo Maple Software, Waterloo, Ont., Canada,
Mathematica 1.2 frowm Wolfram Research Inc., Champaign, IL.

The best results came from DERIVE. Although it could not prove
that B(nY = 1 at all n > 0 (because it could not deduce that
iy = (n2+1)] = ¥ (n®+1) - n at all n > 0), DERIVE did Simplify
G(ly, G{(2), caoe, G999 +to 1 correctly in exact arithmetic for
both the firset and last versions of F . In its approXimate modes
DERIVE aobtained O wusing the first F , 1 using the last F ,
for all of G(1), G2, ..., G(29%9%9) for all Precisions tried,
with ane axcephtion: G{23) was computed as 1 at &0 digits of
precision.

Futile July 18, 1989

DERIVE tells us this about its approXimate arithmetic:

" In approximate mode, irraticnal numbers and large rational
numbers simplify to the simplest rational number that
approximates the original number accurate to the current
precision.”

The word " simplest " here appears to mean " with the shortest
continued fraction expansion,” but 1t is still ambiguous.
Maple V got the most consistent results, all wrong at first. In

all arithmetics, exact and approximate, and for both versions of
F , Maple V produced ¢ Ffor all of G, B2y, ..., G(FFPFT9) .
Trouble ssemed to stem from its interpretation of the conditional

if z =0 then 1 else (exp{z) — 1)/z +fi .
The test 2z = 0 was tried before z was simplified, so guotient
(exp(zy — 1¥/7z was returned though =z simplified to O later.

Then the numerator vanished befare the unsimplified denominator =z
was recognized as 0 , sp Maple called the guotient O without
checking first for a zero divisor! The same thing happened to

A if v =1 then 1 else (y=1)/1lnly}) i ;
consequently both programs for F vielded the same results. When
approximate arithmetic was used instead of exact, some kind of
schizophrenia allowed the divisor to vanish occasionally despite
that the equality predicate predicted that it wouldn’'t, causing a
Division-by-Zero message faor some precisions but not others.

To get around Maple's Ffoibles, Mike B. Monagan's delayed ~I¥°
in the Maple Share library’'s Spline package was adapted to ocur
needs. This got the predicates z = 0 and vy = 1 tested after
instead of before evaluation. However we replaced " y = 1 % by
" y—-1 = 0" because Maple thinks the first is false but the

second true when vy is 1.000000000 . Then quotients were put
between apostrophes to delay their evaluation until after tests.
And because the delayed JIf rebuffed floating-point evaluation by
evalf , " B(converti(n, flopat)) " had to replace " Gn) ". At
last, G(1), B{(2), ... all simplified to 1 in exact arithmetic
with all versions of F ;3 and G(1.0), G(2,0), ... vyielded 0.0
with the first versiaon of F , 1.0 +For the last, in floating-—
point arithmetic at all precisions tried. These are the expected
results, though perhaps right for the wrong reasons since so much
of Maple's kernel’'s behavior is undocumented. Do its architects
think it behaves so completely logically as needs no explanation?

Mathematica got the most perplexing results. In exact arithmetic
Mathematica could not simplify G(1}, G(2), ... to 1 because
it could not simplify AbsiSgrtli+n™2]1 - nl to Sagrtii+n™21 - n
faor each n = 1, 2, ... in turny for instance, AbsiSgrtl21 —~ 11
could not shake off its Abs. The results obtained in approximate
arithmetic of various precisions depended at first sight upon the
definition used for F . With the first unstable definition the
results G(1Y, G(2), ... were all 0. Ffor Precision below 17
Sig. dea. but Indeterminate for higher precisions except possibly
for a first few of G(1), G(2), ... which came out as 1. . With
the last stable definition of F , the results 6 were all 1. .

But the reported Accuracy of each result was inexplicable. To
make a long story short, the Accuracy reported by Mathematica

for the numerical value N[L FL1/10"193, k3 For each precision k
{ no., of siy. dec. carried) is tabulated below, first for the

4

Futile July 18, 1989

first unstable F and next for the last stable version:

Alleged AccuracylD NL FLH/107191, k1 1 in dec. digits

Fp For Pip P P P Py Paa P M M P N A P M P NG P M P T T P P P T P P P P P P P P T P Ry I My Ty T Moy B P Pr B Pr A T P T D N N

ks 16 17 18 19 20 21 22 23 24 25 ...
st F = 323 i7 i8 19 1 2 3 4 5 b “aa
Last F : 16 17 18 19 20 21 3 4 3 b "

R. J. Fateman reports that Mathematica 2.0 gets a somewhat

better middle ling: 323 -3 -2 -1 {1 2 3 4 5 &
These results perplex us in several ways. . First, the accuracies
in bold face pertain to numerical values NMNMIFL...3}, k1l displaved
as 0. , quite wrong. All other values NIFL...1, k]l displayed
as 1. , which is close enough. Mathematica 1.2 reported high
accuracy for all incorrect results, Mathematica 2.0 only for the
first of them. Both versions of Mathematica reported a drop in
accuracy for the last version of F when precision increased ta
22 sig. dec. cerried. Why a droﬁ? Why is the last F accurate

to so many fewer digits than were carried despite error—analyses
that prove hardly any accuracy can be lost?

Since Mathematica’'s inner workings are proprietarily secret,

1= have to specul ate. Mathematica's floating-point arithmetic
appears to match the underlvying hardware’ s floating-point for
precision below 17 sig. dec. For higher precisions, a kind of

Significance Arithmetic is employed to pertorm automatically a
form of error-analysis; the arithmetic discards all digits past
the last digit regarded as reliable in any particular result.

A scheme like this was advocated about thirty years ago by NMNick
Metropolis and Bab Ashenhurst, but later abandoned when its
misbehavior became apparent. First, discarding digits believed
to be erroneous merely urged errors that would Have grown linearly
with time to grow exponentially instead. Second, unless it is
implemented entirely pessimistically, Significance Arithmetic is
quite often too optimistic about error, as in the table’ s bold-
face entries above. Third, it ruins algorithms that cancel out
correlated errors, as does the last version of F . Fourth, a
far better scheme is Interval Arithmetic, which never under-—
estimates error and yet is usually less pessimistic.

Conclusion:

Mumerical software that computes a continupusly differentiable
function of its input data is aften presumed to depend at least
continuously upon its rounding errors, so that one could imagine

taking a " limit as roundoff tends to zerco " to justify the
presumption that increasing arithmetic’'s precision will increase
accuracy at the end. But roundoff is discrete, not continuous;

arnd the limiting process must not be applied indiscriminately lest
it fail, as it does for the example offered hersin.

The data~dependent test-and=-branch in that example may be thought

by some readers to cause the failure; however other more caomplex
test-free examples confound the "limit" process by ‘Yconverging”
very convincingly but prematurely to an incorrect " limit."

b

Futile ‘ July 18, 1989

Other readers may place their faith in a scheme that carries some
indicator of accuracy with every intermediate result, as do both
Significance Arithmetic and Interval Arithmetic. But when such
schemes are used naively they cry " Wolf! " too often; either
they destroy the accuracy of results they are supposed to guard,
aor they allege inaccuracy in results that could be proved guite
accurate, but only in some other way.

The only way { 1f one exists) to guarantee numerical accuracy
is to submit a candidate program to error—analysis, and to modify
it as necessary to achieve stability, before resorting to more
precise arithmetic. The analysis can be automated to some degree,
and is often far esasier with Interval Arithmetic than without.

In any event, the candidate program must be read and understood
rather than merely execuled. Moreover, Lo be understandable,
its approximate arithmetic wmust have other mathematical properties
hasides just " enough precision "; more about that another day.

Acknowl edgment:

I am grateful for advice from Prof. B. M. Parlett, assistance
from Protf. R. J. Fateman, and support from the U. S. Office of
NMaval Research { NOOO14-90-J-1372)} and the National SBcience
Foundation (COCR-8812843). '

