

Copyright © 2015, Intel Corporation. All rights reserved.

 *Other brands and names may be claimed as the property of others
Page 1

The Difference Between x87 Instructions FSIN,

FCOS, FSINCOS, and FPTAN and Mathematical

Functions sin, cos, sincos, and tan

Warren Ferguson, Marius Cornea, Cristina Anderson, Eric Schneider

Introduction

In the early 1980s, the Intel® 8087 Math Coprocessor introduced hardware support for a small set of

elementary transcendental functions (trigonometric, inverse trigonometric, exponential, and

logarithmic), accessible through x87 instructions. In the 1990s Intel replaced the 8087’s CORDIC-based

approximations of the elementary transcendental functions with polynomial-based approximations.

These newer polynomial-based approximations provide a large degree of backwards compatibility with

the CORDIC based approximations by approximating precisely the same functions, but with greater

overall accuracy and speed.

The purpose of this paper is to inform users of many of the implementation details of the x87

trigonometric instructions. If users find that the x87 elementary transcendental instructions are not

adequate for their needs, they should consider using the software libraries of transcendental functions

available through the Intel® C++ Compiler and Intel® Fortran Compiler, the Intel® Math Kernel Library

(Intel® MKL) product, or libraries from other providers. Just as double precision arithmetic is provided to

users when single precision floating-point arithmetic is not adequate, so these software library functions

provide more accurate approximations when the x87 instructions are not adequate.

Rounded Pi

The value of the mathematical constant  ≅ 3.14159265358979… is (in hexadecimal format):

 π ≝ (0. C90FDAA22168C234C⏟
68 bits

4C6628B80DC1CD12902…)16 ⋅ 2
2

The value 𝑝 that the x87 uses as its approximation of 𝜋 is the value of 𝜋 rounded-to-nearest to its

leading 68 bits (of which the last two bits are zeros):

 𝑝 ≝ (0. C90FDAA22168C234C)16 ⋅ 2
2 .

Note that 𝑝 differs from 𝜋 by a little more than one unit in the 70th bit of π.

The bit-length of 𝑝, measured as the number of bits between its most significant and least significant bit

inclusively, is 66. (This is why Volume 1 of the Intel® Software Developer’s Manuals refers to 𝑝 as a 66-

bit approximation of π.)

Copyright © 2015, Intel Corporation. All rights reserved.

 *Other brands and names may be claimed as the property of others
Page 2

Observe that

 π − 𝑝 = (0.4C6628B80DC1CD12902…)16 ⋅ 2
−66 = (0.98CC51701B839A25204…)16 ⋅ 2

−67

and, as a result, the relative error 𝑒 in the approximation of 𝑝 by π is

 𝑒 ≝
π−𝑝

𝑝
=
𝜋

𝑝
− 1 ≅ (1.28741467897512077…)10 ⋅ 10

−21 ≅ 1.5 ⋅ 2−70.

Definition of the x87 Trigonometric Approximations

FSIN, FCOS, FSINCOS, and FPTAN are x87 double-extended precision instructions that compute

approximations of the following functions:

𝐹𝑆𝐼𝑁(𝑥) ≅ sin(𝑥 ⋅ π 𝑝⁄)

𝐹𝐶𝑂𝑆(𝑥) ≅ cos(𝑥 ⋅ π 𝑝⁄)

𝐹𝑆𝐼𝑁𝐶𝑂𝑆(𝑥) ≅ {sin(𝑥 ⋅ π 𝑝⁄) , cos(𝑥 ⋅ π 𝑝⁄)}

𝐹𝑃𝑇𝐴𝑁(𝑥) ≅ {sin(𝑥 ⋅ π 𝑝⁄) cos(𝑥 ⋅ π 𝑝⁄) , 1⁄ }

for all 𝑥 for which |𝑥| < 263. For any one of the trigonometric functions on the RHS, the error in the

corresponding x87 approximation on the LHS is less than 1 ulp in round-to-even mode, and 1.5 ulps1 in

the other rounding modes.

Because the functions FSIN, FCOS, FSINCOS, and FPTAN share 2𝑝 as a common period, and 2𝑝 is the

value of 2𝜋 rounded-nearest to its leading 68 bits, they are said to be rounded-period approximations.

Derivation of the Value of the x87 Trigonometric Approximations

The value of these rounded-period trigonometric functions at a double-extended precision argument 𝑥

is obtained through a three-step process:

1. Reduction: Compute {𝑁, 𝑟} so 𝑥 = 𝑁 ⋅ (
𝑝

2
) + 𝑟 exactly; 𝑁 is an integer and −𝑝 4⁄ < 𝑟 < 𝑝 4⁄ .

2. Approximation: Compute double-extended precision approximations of {sin(𝑥 ⋅ π 𝑝⁄) , cos(𝑥 ⋅

π 𝑝⁄)}.

3. Reconstruction: The two least significant bits of 𝑁 allow the recovery of the desired rounded-

period trigonometric function.

The reduction step is performed, essentially, through the use of a floating-point remainder instruction.

This remainder instruction is exact, and so the value of 𝑟 is exact. We know that 𝑟 can never attain either

of the values ±𝑝 4⁄ because, if it did, then it would follow that 𝑥 = (2𝑁 ± 1) ⋅ 𝑝 4⁄ ; however this is

impossible, because the RHS has a significand that is at least 66 bits long, and we know that the double-

extended precision 𝑥 has a significand that is at most 64 bits long. A similar argument tells us that 𝑟 can

1
 See “On the definition of ulp(x)” by Jean Michel Muller. Roughly speaking, for any real number 𝑥 and a given

floating-point format, 𝑢𝑙𝑝(𝑥) is the distance between the two floating-point numbers in that format that are
nearest to 𝑥.

http://ljk.imag.fr/membres/Carine.Lucas/TPScilab/JMMuller/ulp-toms.pdf

Copyright © 2015, Intel Corporation. All rights reserved.

 *Other brands and names may be claimed as the property of others
Page 3

be zero if and only if 𝑥 is zero. (Backwards compatibility with the original 8087 requires that this

reduction step remain unchanged.)

Now sin(𝑟 ⋅ 𝜋 𝑝⁄) is an odd function on the interval −𝑝 4⁄ < 𝑟 < 𝑝 4⁄ , so it is approximated by

polynomials that are a sum of constants multiplied by odd powers of 𝑟. Similarly, cos(𝑟 ⋅ π 𝑝⁄) is an even

function on the same interval, so it is approximated by polynomials that are a sum of constants

multiplied by even powers of 𝑟. As a result, FSIN and FPTAN are odd functions of their argument, while

FCOS is an even function of its argument, i.e.:

 𝐹𝑆𝐼𝑁(−𝑥) = −𝐹𝑆𝐼𝑁(𝑥)

𝐹𝐶𝑂𝑆(−𝑥) = 𝐹𝐶𝑂𝑆(𝑥)

𝐹𝑃𝑇𝐴𝑁(−𝑥) = −𝐹𝑃𝑇𝐴𝑁(𝑥) .

The reconstruction step is based on the addition rules for sine and cosine. These rules tell us that

 sin (𝑥 ⋅
𝜋

𝑝
) = sin (𝑁 ⋅

𝜋

2
+ 𝑟 ⋅

𝜋

𝑝
) = sin (𝑁 ⋅

𝜋

2
) ⋅ cos (𝑟 ⋅

𝜋

𝑝
) + cos (𝑁 ⋅

𝜋

2
) ⋅ sin (𝑟 ⋅

𝜋

𝑝
)

 cos (𝑥 ⋅
𝜋

𝑝
) = cos (𝑁 ⋅

𝜋

2
+ 𝑟 ⋅

𝜋

𝑝
) = cos (𝑁 ⋅

𝜋

2
) ⋅ cos (𝑟 ⋅

𝜋

𝑝
) − sin (𝑁 ⋅

𝜋

2
) ⋅ sin (𝑟 ⋅

𝜋

𝑝
)

and leads to the following table that describes how the rounded-period sine and cosine at argument 𝑥 is

related to the rounded-period sine and cosine at argument 𝑟. As this table shows, the rounded-period

sine or cosine at argument 𝑥 is, to within a sign, its value at the reduced argument 𝑟.

Function 𝑁 𝑚𝑜𝑑 4 = 0 𝑁 𝑚𝑜𝑑 4 = 1 𝑁 𝑚𝑜𝑑 4 = 2 𝑁 𝑚𝑜𝑑 4 = 3

𝑠𝑖𝑛 (𝑥 ⋅
𝜋

𝑝
) sin (𝑟 ⋅

𝜋

𝑝
) cos (𝑟 ⋅

𝜋

𝑝
) −sin (𝑟 ⋅

𝜋

𝑝
) −cos (𝑟 ⋅

𝜋

𝑝
)

𝑐𝑜𝑠 (𝑥 ⋅
𝜋

𝑝
) cos (𝑟 ⋅

𝜋

𝑝
) −sin (𝑟 ⋅

𝜋

𝑝
) −cos (𝑟 ⋅

𝜋

𝑝
) sin (𝑟 ⋅

𝜋

𝑝
)

Further Properties of the x87 Trigonometric Approximations

Because the rounded-period approximations of the sine and cosine are evaluated accurately at the same

argument 𝑥 ⋅ π 𝑝⁄ , we expect that any mathematical identity between them also holds, with small

absolute error, when their values are replaced by the values of their corresponding rounded-period

approximations. For example, because

 sin(𝑥)2 + cos(𝑥)2 = 1

then we expect that

 𝐹𝑆𝐼𝑁(𝑥)2 + 𝐹𝐶𝑂𝑆(𝑥)2 ≅ 1

with small absolute error; here small means a value with a magnitude that is a modest multiple of 2−63.

Copyright © 2015, Intel Corporation. All rights reserved.

 *Other brands and names may be claimed as the property of others
Page 4

To relate the sine and cosine at 𝑥 to the sine and cosine at 𝑥 ⋅ π 𝑝⁄ note that

𝑥 = 𝑥 ⋅
𝜋

𝑝
− 𝑥 ⋅ (

𝜋

𝑝
− 1) = 𝑥 ⋅

𝜋

𝑝
− 𝑥 ⋅ 𝑒 .

where 𝑒 is as defined at the end of the “Rounded Pi” section.

The addition rules for sine and cosine tell us that

 sin(𝑥) = sin (𝑥 ⋅
𝜋

𝑝
− 𝑥 ⋅ 𝑒) = sin (𝑥 ⋅

𝜋

𝑝
) ⋅ cos(𝑥 ⋅ 𝑒) − cos (𝑥 ⋅

𝜋

𝑝
) ⋅ sin(𝑥 ⋅ 𝑒)

 cos(𝑥) = cos (𝑥 ⋅
𝜋

𝑝
− 𝑥 ⋅ 𝑒) = cos (𝑥 ⋅

𝜋

𝑝
) ⋅ cos(𝑥 ⋅ 𝑒) + sin (𝑥 ⋅

𝜋

𝑝
) ⋅ sin(𝑥 ⋅ 𝑒)

Because {𝐹𝑆𝐼𝑁(𝑥), 𝐹𝐶𝑂𝑆(𝑥)} ≅ {sin(𝑥 ⋅ π 𝑝⁄) , cos(𝑥 ⋅ π 𝑝⁄)} with an error of less than 1.5 double-

extended precision ulps, we would expect

 sin(𝑥) ≅ 𝐹𝑆𝐼𝑁(𝑥) ⋅ cos(𝑥 ⋅ 𝑒) − 𝐹𝐶𝑂𝑆(𝑥) ⋅ sin(𝑥 ⋅ 𝑒)

 cos(𝑥) ≅ 𝐹𝐶𝑂𝑆(𝑥) ⋅ cos(𝑥 ⋅ 𝑒) + 𝐹𝑆𝐼𝑁(𝑥) ⋅ sin(𝑥 ⋅ 𝑒)

to hold with small absolute error. Recall that |𝑥| < 263 and 𝑒 ≅ 1.5 ⋅ 2−70, so |𝑥 ⋅ 𝑒| ≤̃ 1.5 ⋅ 2−7 ≅

0.012 radians ≅ 0.68 degrees. Therefore, cos(𝑥 ⋅ 𝑒) ≅ 1 + 𝒪((𝑥 ⋅ 𝑒)2) and sin(𝑥 ⋅ 𝑒) ≅ (𝑥 ⋅ 𝑒) +

𝒪((𝑥 ⋅ 𝑒)3). From these estimates, we conclude that

 sin(𝑥) ≅ 𝐹𝑆𝐼𝑁(𝑥) − (𝑥 ⋅ 𝑒) ⋅ 𝐹𝐶𝑂𝑆(𝑥) + 𝒪((𝑥 ⋅ 𝑒)2)

cos(𝑥) ≅ 𝐹𝐶𝑂𝑆(𝑥) + (𝑥 ⋅ 𝑒) ⋅ 𝐹𝑆𝐼𝑁(𝑥) + 𝒪((𝑥 ⋅ 𝑒)2)

and so

 |sin(𝑥) − 𝐹𝑆𝐼𝑁(𝑥)| ≤ |𝑥 ⋅ 𝑒| + 𝒪((𝑥 ⋅ 𝑒)2)

 |cos(𝑥) − 𝐹𝐶𝑂𝑆(𝑥)| ≤ |𝑥 ⋅ 𝑒| + 𝒪((𝑥 ⋅ 𝑒)2).

Another way to think about the quality of these approximations is based on the fact that the value of a

rounded-period trigonometric function at argument 𝑥 is an accurate approximation of the

corresponding trigonometric function at an argument 𝑥′ = 𝑥 ⋅ π 𝑝⁄ that lies very near 𝑥; the error in

approximating 𝑥 by 𝑥′ amounts to something much less than 1 double-extended precision ulp in 𝑥. As

long as the value of the expression being computed is insensitive to such small changes in the argument

𝑥, it is safe to approximate the trigonometric functions in that expression by their rounded-period

counterparts. Here we are appealing to the technique of backward error analysis, whose goal is to recast

the approximate evaluation of an expression of exact arguments as an exact evaluation of the same

expression but using approximations of the arguments.

For example, the distance from the origin to the point {7 ⋅ 𝐹𝐶𝑂𝑆(3𝑥),−5 ⋅ 𝐹𝑆𝐼𝑁(3𝑥)} is an accurate

estimate of the distance from the origin to the point {7 ⋅ cos(3𝑥),−5 ⋅ sin (3𝑥)}; this distance

calculation is insensitive to changes in the argument of the trigonometric functions.

On the other hand, it would not be safe to use 𝐹𝑆𝐼𝑁(𝑥) to approximate sin(𝑥) for arguments 𝑥 near a

nonzero multiple of π. When 𝑥 ≝ 𝑛 ⋅ π with 𝑛 ≠ 0, then for small |𝛿| we know that

Copyright © 2015, Intel Corporation. All rights reserved.

 *Other brands and names may be claimed as the property of others
Page 5

sin(𝑥 + 𝛿) = cos(𝑛 ⋅ 𝜋) sin(𝛿) = (−1)𝑛 sin(𝛿) ≅ (−1)𝑛𝛿,

and so a change of 𝛿 in 𝑥 causes a change of similar magnitude in the value of the sine. However, for

𝑛 = 0 it is safe to approximate sin(𝑥) with 𝐹𝑆𝐼𝑁(𝑥); each rounded-period trigonometric function is a

very accurate approximation of the corresponding trigonometric function as the magnitude of the

argument tends to zero (for such small magnitude arguments 𝑥, the reduction step yields {𝑁, 𝑟} =

{0, 𝑥}).

In a similar manner, FCOS(x) should not be relied on as an accurate approximation of cos(x) near odd

multiples of π/2, and FPTAN(x) should not be relied on as an accurate approximation of tan(𝑥) near

multiples of π/2, odd or even.

For example, a graphical representation of the ulp error when 𝐹𝑆𝐼𝑁(𝑥) is used to approximate the

mathematical function sin(𝑥) is shown in the following graph:

The graph shows how the ulp error increases sharply as the argument 𝑥 of FSIN approaches the value 𝜋.

Finally, consider the problem of computing the value of an expression that involves the values of the

trigonometric functions at 𝑥, where 𝑥 is the result of a previous computation and it contains itself an

error of several double-extended precision ulps.

If the value of that expression is insensitive to changes in 𝑥, then the value of that expression

determined via the rounded-period trigonometric functions in place of the actual trigonometric

functions causes an additional error no larger than that already present in the approximate value of 𝑥.

The following table displays the radian and degree measures of a 1 double-extended precision ulp

Copyright © 2015, Intel Corporation. All rights reserved.

 *Other brands and names may be claimed as the property of others
Page 6

change in 𝑥 ≝ (1 + 𝑓) ⋅ 2𝑒. Here the double-extended precision 𝑥 has a fractional portion 𝑓 and

exponent 𝑒, so a 1 ulp change in 𝑥 amounts to 2𝑒−63.

1 ulp change in x

e radians degrees

-3 1.36E-20 7.77E-19

2 4.34E-19 2.48E-17

7 1.39E-17 7.95E-16

12 4.44E-16 2.54E-14

17 1.42E-14 8.14E-13

22 4.55E-13 2.61E-11

27 1.46E-11 8.34E-10

32 4.66E-10 2.67E-08

37 1.49E-08 8.54E-07

42 4.77E-07 2.73E-05

47 1.53E-05 8.74E-04

52 4.88E-04 2.80E-02

57 1.56E-02 8.95E-01

62 5.00E-01 2.86E+01

Conclusion

It is important to remember that 𝐹𝑆𝐼𝑁(𝑥), 𝐹𝐶𝑂𝑆(𝑥), 𝐹𝑆𝐼𝑁𝐶𝑂𝑆(𝑥), and 𝐹𝑃𝑇𝐴𝑁(𝑥) are approximations

of the corresponding mathematical functions of argument (𝑥 ⋅ π 𝑝⁄), and not of argument (𝑥).

Therefore they can only be used to approximate the mathematical functions sin(𝑥), cos(𝑥), and tan(𝑥)

on a limited domain, outside of which a more accurate argument reduction technique is necessary in

order to contain the errors, or, alternatively, accurate software implementations of these mathematical

functions may to be used.

The limitations of using a 68-bit approximation of 𝜋 are also explained in the Intel® 64 and IA-32

Architectures Software Developer Manuals, available online at

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html. See Vol. 1, section 8.3.8 “Approximation of Pi”, and the instruction manual pages in Vol.

2A, section 3.2.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

