11.001001000011111101101010100010001000 Arithmazium
Home

Basic operations

This section exhibits some algebra with regular continued fractions.

Doubling

We find two cases, depending on whether the first quotient is even or odd. First, the even case: \[ \newcommand{\sslash}{\mathbin{/\mkern-6mu/}} \newcommand{\tslash}{\mathbin{/\mkern-5mu/}} \newcommand{\uslash}{\mathbin{/\mkern-4mu/}} \begin{array}{ll} 2 \sslash 2a, b, c, \ldots \sslash & = \frac{2}{2a + \frac{1}{b + \cdots}} \\ & = \frac{1}{a + \frac{1}{2b + \frac{2}{\cdots}}} \\ & = \sslash a, 2b + 2\sslash c , d, \ldots \sslash \sslash \end{array} \] Then the odd case: \[ \begin{array}{ll} 2 \sslash 2a + 1, b, c, \ldots \sslash & = \frac{2}{2a + 1 + \frac{1}{b + \uslash c, d, \ldots \uslash}} \\ & = \frac{1}{a + \frac{1}{2} + \frac{1}{2b + 2\uslash c, d, \ldots \uslash}} \\ & = \frac{1}{a + \frac{(b + 1) + \uslash c, d, \ldots \uslash } {2b + 2\uslash c, d, \ldots \uslash}} \\ & = \sslash a, 1, 1 + 2\sslash b - 1, c , d, \ldots \sslash \sslash \end{array} \]

Reciprocation

Given \( A = A_0 + \sslash A_1, A_2, \ldots \sslash \) compute \[ B = B_0 + \sslash B_1, B_2, \ldots \sslash = 1 / A \] The result always has the form \[ B_0 + \sslash B_1, \ldots, B_m, A_4, A_5, \ldots \sslash \] but various cases arise, depending on \( A_0 \) and \( A_1 \).

Case \( A_0 = 0 \)

This case reduces easily. \[ B = A_1 + \sslash A_2, A_3, \ldots \sslash = 1 / \sslash A_1, A2, \ldots \sslash \]

Case \( A_0 > 0 \)

In this case, \( A_0 \) is absorbed into the continued fraction. \[ B = \sslash A_0, A_1, A_2, \ldots \sslash = 1 / (A_0 + \sslash A_1, A2, \ldots \sslash) \] The interesting cases arise when \( A_0 < 0 \).

Case \( A_0 < -1 \)

Here, \( A < -1 \) so \( -1 < 1/A < 0 \) making \( B_0 = -1 \). \[\begin{array}{ll} B & = \frac{1}{A_0 + \tslash A_1, A_2, \ldots \tslash} \\ & = -1 + \frac{1} {\frac{A_0 + 1 + \uslash A_1, A_2, \ldots \uslash -1} {A_0 + 1 + \uslash A_1, A_2, \ldots \uslash}} \\ & = -1 + \frac{1}{1 + \frac{1}{(-A_0 - 2) + (1 - \uslash A_1, A_2, \ldots \uslash ) }} \\ & = -1 + \sslash 1, -A_0 - 2, 1, A_1 - 1, A_2, A_3, \ldots \sslash \end{array} \]

Case \( A_0 = -1 \) and \( A_1 > 1 \)

Here, \( A = -1 + f \) where \( 0 < f \leq 1/2 \) so \( -2 \leq 1/A < -1 \) making \( B_0 = -2 \). \[ \begin{array}{ll} B & = \frac{1}{-1 + \frac{1} { A_1 + \uslash A_2, A_3, \ldots \uslash}} \\ & = -1 + \frac{1} {-A_1 + 1 - \uslash A_2, A_3, \ldots \uslash} \\ & = -2 + \frac{1} {\frac{ A_1 - 1 + \uslash A_2, A_3, \ldots \uslash} {A_1 - 2 + \uslash A_2, A_3, \ldots \uslash}} \\ & = -2 + \frac{1} {1 + \frac{1}{A_1 - 2 + \uslash A_2, A_3, \ldots \uslash}} \\ & = -2 + \sslash 1, A_1 - 2, A_2, A_3, \ldots \sslash \end{array} \]

Case \( A_0 = -1 \) and \( A_1 = 1 \)

Here, \( A = -1 + g \) where \( 1/2 < g \leq 1 \) so \( 1/A < -2 \) making \( B_0 < -2 \). \[ \begin{array}{ll} B & = \frac{1}{-1 + \frac{1} { 1 + \uslash A_2, A_3, \ldots \uslash }} \\ & = \frac{1 + \tslash A_2, A_3, \ldots \tslash} { - \tslash A_2, A_3, \ldots \tslash } \\ & = -1 - A_2 - \sslash A_3, A_4, \ldots \sslash \\ & = -A_2 - 2 + \sslash 1, A_3 - 1, A_4, \ldots \sslash \end{array} \]

Home